
Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2019

Supporting infromation

Title: Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on graphene oxide sponge

Authors: Pengxiang Wang, Luyan Wang*, Mei Ding, Meishan Pei and Wenjuan Guo (School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China)

Fig.S1

Fig. S1 HRTEM image of GOS

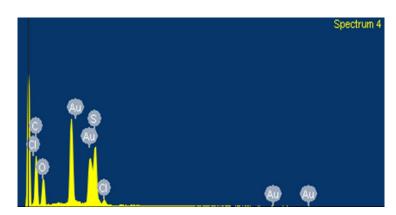


Fig. S2 EDX of PEDOT-AuNFs

Fig.S2

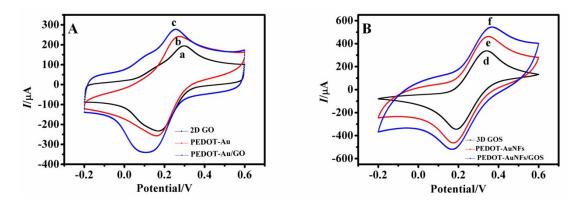


Fig. S3 (A) CVs of electrodes modified by (a) 2D GO, (b) PEDOT-Au, (c) PEDOT-Au/GO; (B) CVs of (d) 3D GOS, (e) PEDOT-AuNFs, (f) PEDOT-AuNFs/GOS, respectively. All of CV curves were recorded from -0.2 V to 0.6 V in the solution of 5 mM $Fe(CN)_6^{3-/4-}$ as a redox probe and 0.2 M KCl at a scan rate of 100mV/s.

Fig.S4

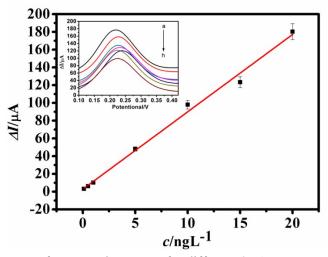


Fig. S4 Calibration curve of DPV peak currents for different OTA concentrations from 0.01 ng/L to 20 ng/L. The inset shows DPV responses of the electrochemical aptasensor to different concentrations of OTA (from a to h: 0, 0.1, 0.5, 1, 5, 10, 15, 20 ng/L). $\Delta I(\mu A)=8.7c(ng/L)+2.8$ ($\Delta I=I_{(BSA/aptamer/PEDOT-AuNFs/GOS)}-I_{(OTA/BSA/aptamer/PEDOT-AuNFs/GOS)}$), R²=0.9921. DPV curves were recorded from -0.2 V to 0.6 V in the solution of 5 mM Fe(CN)₆^{3-/4-} as a redox probe and 0.2 M KCl at a scan rate of 100mV/s.

Table S1

Table S1 The electroactive surface area (A) of different modified electrodes	
Electrode	A (cm ²)
GCE	0.094
GO/GCE	0.171
PEDOT-Au/GCE	0.213
PEDOT-Au/GO/GCE	0.256
GOS/GCE	0.299
PEDOT-AuNFs/GCE	0.367
PEDOT-AuNFs /GOS/GCE	0.444

Table S1 The electroactive surface area (A) of different modified electrodes

Note: The data are calculated based on the Randles–Sevcike equation $Ip = 2.65 \times 10^5 n^{3/2} AD^{1/2} v^{1/2}C$, where Ip is the peak current, n is the transferring electron number, A is the electroactive area (cm²), D is the diffusion coefficient, v is the scanning rate, and C is the concentration of the substrate. The diffusion coefficient of K₃[Fe(CN)₆] is 7.6 × $10^6 cm^2/s$.