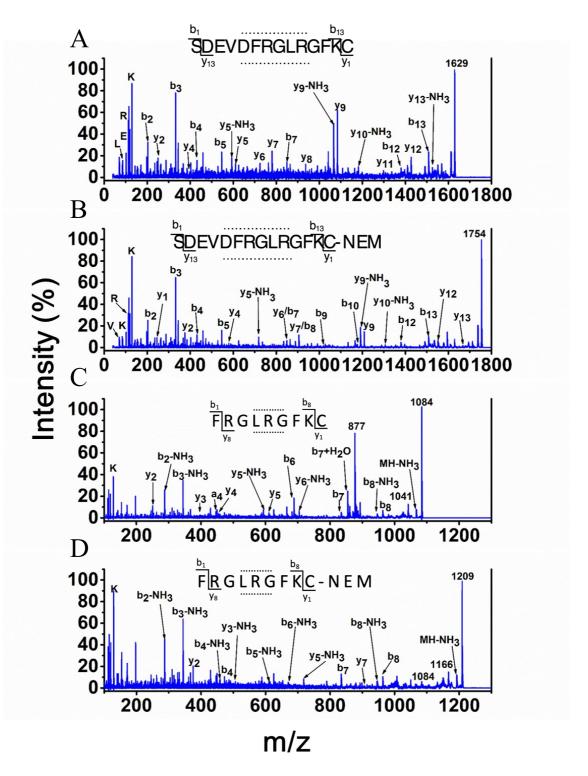
Supplementary Information

Sensitive detection of caspase-3 enzymatic activities and inhibitor screening by mass spectrometry with dual maleimides labelling quantitation


Fuzhong Ouyang^a, Tianrong Yu^a, Chao Gu^b, Guanghui Wang^b, Rui Shi^a, Rui Lv^a, Enhui Wu^a, Chongqing Ma^a, Ruochen Guo^a, Jing Li^a, Anna Zaczek^c, Jian Liu^{*a}

E-mail: jliu@suda.edu.cn iMINTS Lab, http://web.suda.edu.cn/jliu/

^a Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.

^b Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China.

^c Medical Biotechnology Department, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, Gdansk, 80-211, Poland

Figure S1. MS/MS spectra of (A) unlabeled P1 at m/z 1629, (B) NEM-P1 at m/z 1754, (C) fragment of caspase-3 cleaved P1 at m/z 1084 and (D) fragment of caspase-3 cleaved NEM-P1 at m/z 1209.

Table S1. List of b- and y-type of fragments generated from the parent ion peak at m/z of 1629.

Name of fragment	Theoretical m/z	Name of fragment	Theoretical m/z
b_2	203.06	y ₂	250.12
b_3	332.11	y_4	454.21
b_4	431.18	y ₅	610.31
b_5	546.20	y ₆	723.40
b ₇	849.37	y ₇	780.42
b ₁₂	1379.67	y ₈	936.52
b ₁₃	1507.77	У ₉	1083.59

Table S2. List of b- and y-type of fragments generated from the parent ion peak at m/z of 1754.

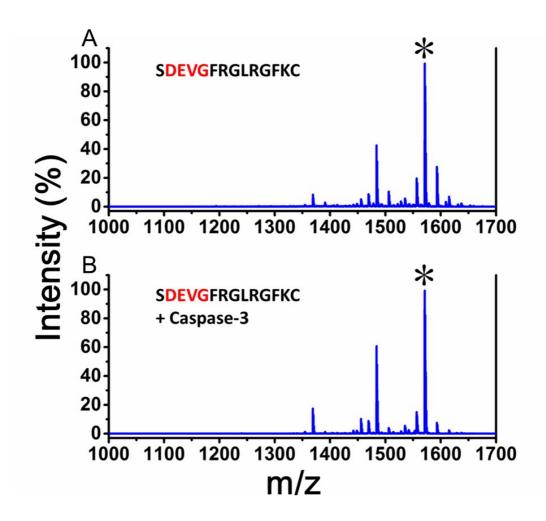

Name of fragment	Theoretical m/z	Name of fragment	Theoretical m/z
b_2	203.06	y_1	247.16
b_3	332.11	y ₂	375.25
b_4	431.18	y ₄	579.34
b ₅	546.20	y ₆	848.53
b ₇	849.37	y ₇	905.55
b ₁₂	1379.67	y ₉	1208.72
b ₁₃	1507.77	Y ₁₂	1551.86

Table S3. List of b- and y-type of fragments generated from the parent ion peak at m/z of 1084.

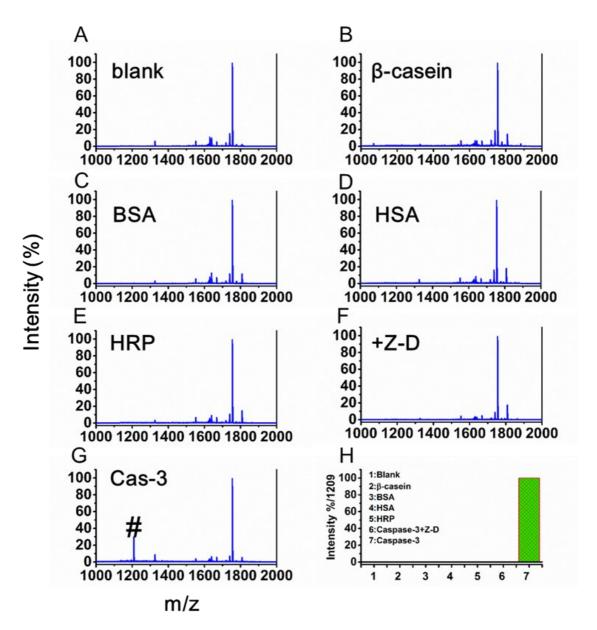
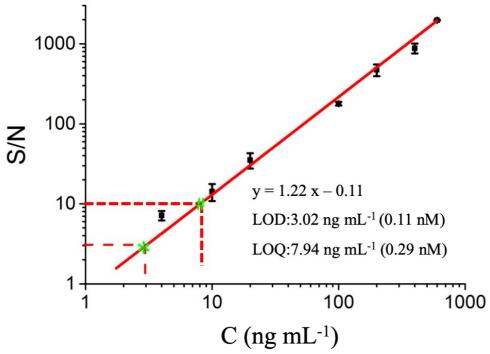
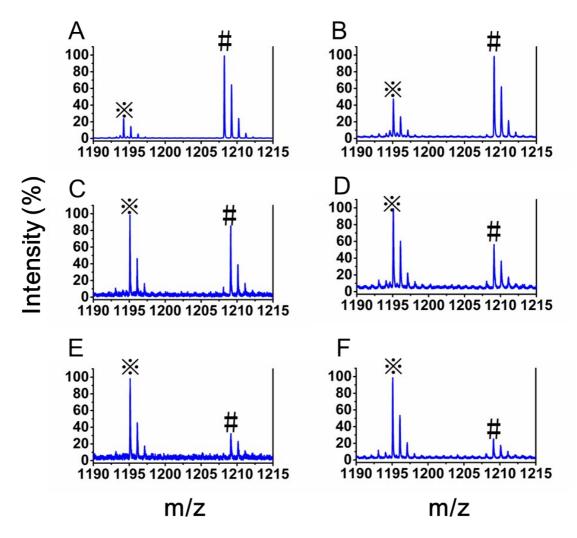
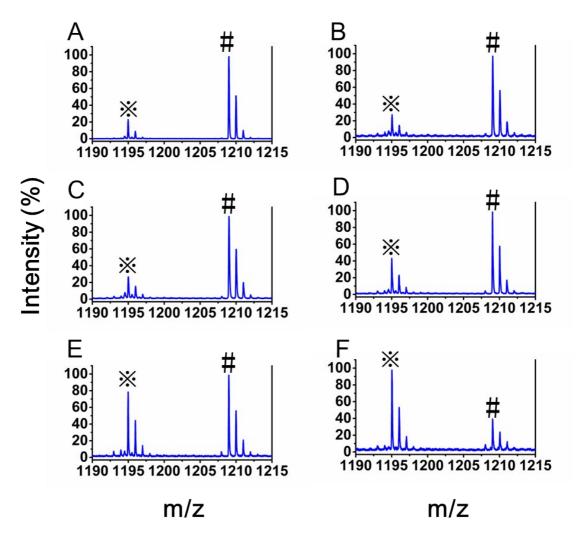

Name of fragment	Theoretical m/z	Name of fragment	Theoretical m/z
b ₂ -NH ₃	287.15	y ₂	250.12
b ₃ -NH ₃	344.17	y ₃	397.19
b_6	687.40	y ₄	454.21
b ₇	834.47	y ₅ -NH ₃	593.29
b ₇ +H ₂ O	852.47	y ₅	610.31
b ₈ -NH ₃	945.54	y ₆ -NH ₃	706.37
b_8	962.57	К	126.09

Table S4. List of b- and y-type of fragments generated from the parent ion peak at m/z of 1209.


Name of fragment	Theoretical m/z	Name of fragment	Theoretical m/z
b ₂ -NH ₃	287.15	y ₂	375.25
b ₃ -NH ₃	344.17	y ₃ -NH ₃	505.29
b_4	474.28	y ₅ -NH ₃	718.42
b ₅ -NH ₃	613.36	y ₇	905.55
b ₆ -NH ₃	670.38	b ₈ -NH ₃	945.54
b ₇	834.47	MH-NH ₃	1066.56
b_8	962.57	К	126.09


Figure S2. Mass spectra of control peptide P3 before (A) and after (B) incubation with 10 μ L 2 μ g/mL of caspase-3at 37 °C for 1 h. The result suggests that P3 cannot be cleaved by caspase-3.


Figure S3. Mass spectra of 50 μM NEM-P1 incubated with 200 ng/ml different proteins or enzymes at 37 $^{\circ}$ C for 1 h .(A)blank, (B) β-casein, (C) BSA, (D) HSA, (E) HRP, (F) caspase-3 with inhibitor Z-DEVD-FMK, (G) caspase-3 alone. (H) Intensity of enzyme cleaved fragment at m/z of 1209 for different samples. The result suggests NEM-P1 can be specifically cleaved by caspase-3.

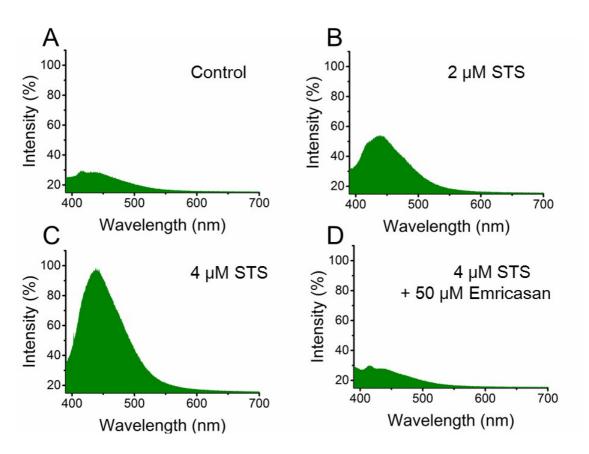

Figure S4. Limit of detection (LOD) and quantitation (LOQ) for quantitative detection of caspae-3 activity *in vitro*. The LOD was calculated by extrapolating the calibration curve till S/N = 3, and S/N=10 for LOQ. Error bar: standard deviation (n=3).

Figure S5. Mass spectra of 50 μ M NEM-P1 incubated with 200 ng/mL caspase-3 and different concentrations of its inhibitor Emricasan at 37 °C for 120 min. The concentration from (A) to (F) is 0, 10, 50, 100, 500 and 10000 nM, respectively. \times protonated internal standard NMM-P2 at m/z 1195, # protonated enzyme cleaved fragment from NEM-P1 at m/z 1209

Figure S6. Mass spectra of 50 μ M NEM-P1 incubated with 200 ng/mL caspase-3 and different concentrations of its inhibitor Z-DEVD-FMK at 37°C for 120 min. The concentration from (A) to (F) is 0, 10, 100, 500, 1000 and 10000 nM, respectively. \times protonated internal standard NMM-P2 at m/z 1195, # protonated enzyme cleaved fragment from NEM-P1 at m/z 1209.

Figure S7. Fluorescence images of caspase-3 activity detection in PC12 cell lysates treated with (A) 0, (B) 2, (C) 4 μ M STS, and (D) 4 μ M STS and 50 μ M inhibitor Emricasan. The cell density was 900,000 cells/dish, and the commercial fluorescence probe was 5 μ M AC-DEVD-AMC.