
S.I. 1:  Enthalpy-Entropy Compensation in Activated Processes Described Using the Eyring 

Equation

Combining Eq. 1 and Eq. 12 yields:

(A1)𝑘= 𝑒
[𝑎+ 𝑏𝐸 ‒ ( 𝐸𝑅𝑇)]

From Eq. A1, one can infer that there are two components of the activation energy – one that has the 

expected T-dependence from Eq. 1 and the other that is a constant (T-independent), but whose 

magnitude is modified by the coefficient, b, rather than being normalized to RT in the Arrhenius manner.  

To better understand the latter result, one can turn to the Eyring equation and replace E in Eq. 1 with the 

Gibbs free energy of the barrier to activation, ΔG‡ (= ΔH‡ - TΔS‡):
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where κ is the transmission coefficient, kB is the Boltzmann constant and h is the Planck constant.  

According to Transition State Theory, there exists a quasi-equilibrium (specified by the constant, K‡) 

between the reactants and the transition state species that defines the barrier height, taking into 

consideration the partition functions of the relevant species.  From Eq. A2, one finds that k = 1 specifically 

when .  Therefore, applying this simplifying condition, a valid result is: 
𝐾 ‡ =

ℎ
𝜅𝑘𝐵𝑇

(A3)
Δ𝐻 ‡ ≈ 𝑇{Δ𝑆 ‡ + 𝑅[𝑙𝑛(𝜅𝑘𝐵𝑇ℎ )]}
Generalizing Eq. A3 (to make it valid for other constant values of k), allows one to obtain the 

familiar result for kinetic enthalpy-entropy compensation (for a given mechanism and at fixed T, P):
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(A4)Δ𝐻 ‡ = 𝑐+ 𝑑Δ𝑆 ‡

whereby one introduces the new, empirical constants, c ( ) and d ( ).  The latter constant 
≈ 𝑅𝑇[𝑙𝑛(𝜅𝑘𝐵𝑇ℎ )] ≈ 𝑇

has been used by some workers to infer the isokinetic temperature and, from it, the apparent 

(approximate) transition state dissociation frequency.  However, Eq. 4 should generally be applied with 

caution because, while it has been discussed previously that entropy-enthalpy compensation is not the 

same thing as an isokinetic relationship (one does not necessarily support the existence of the other), 

both relationships are often plagued with “artifacts and misunderstandings”11 and, as could be the case 

in solid-state kinetics, “misuse of the kinetic model can lead to compensation”11 since the difference in 

the magnitude of experimental error often associated with A and E in Eq. 12 can make observed 

correlations dubious from a statistical viewpoint.  For this reason, the a priori assumption of a 

compensation effect, as an integral part of any thermal method, could warrant further justification.  

Regardless, for the sake of completeness, using the same assumption (k = 1) in Eq. 1 yields:

  (A5)
𝑙𝑛⁡(𝐴)=

𝐸
𝑅𝑇

from which, by analogy to Eq. A4, one can derive the general functional form of Eq. 12 (whereby the non-

zero constant, a, is added to accommodate empirical curve-fitting and b ).
≈
1
𝑅𝑇

S.I. 2:  Dispersive Kinetics

The distribution of activation energies underpinning DKMs7-9 comes about due to distributed 

reactivity10.  Most simply, one can consider this behavior to be attributable to a multi-step conversion in 

which the mechanism is fixed but perturbed slightly from one molecule to the next.  Although chemically 



identical, molecules within a condensed phase can experience different environments depending on their 

spatial location within the crystal, the size and shape of the primary particles, lattice defects, 

agglomeration, etc., that can cause them to react at different times and/or with different specific rates.  

Moreover, these factors often evolve continuously over the course of the conversion.  The resultant 

dynamical contribution to the underlying conversion kinetics, which (coarse-grained) gives the activation 

energy distribution its width, is often unnoticed in the case of a well-stirred solution whereby all dissolved 

molecules undergo conversion with the same specific rate due to the similarity of their environment.  

Consequently, DKMs also exhibit a time-dependent k, whereas in CKMs it is generally a constant (per the 

Arrhenius equation).  

Dispersive kinetics have been described using the concept of fractal reactivity8.  While geometric 

fractals are well-known, describing the change in k of a solid-state conversion using fractals is, perhaps, 

most simply understood by considering that particles of varying size will require different durations to 

complete conversion.  In addition to that, while molecules on the surface will convert with a different rate 

than those in the bulk, new surfaces can be expected to be generated continuously over the course of the 

conversion via “system renewals”8.  Therefore, even for a unimodal particle size distribution of fixed size, 

one can think of distributed reactivity through the implicit assignment of a different rate constant to 

different “layers” of molecules in the particle, considering it to be akin to an onion12.  This is particularly 

important on the nanometer dimensions of nuclei and colloids, whereby relatively large energy 

differences might be expected between the individual layers (note that the “nowhere-differentiable” 

property common to fractals might lend support to the idea of quantization13).  Contrastingly, as CKMs (or 

combined CKMs14) do not allow one to differentiate amongst the various environments in condensed 

matter by considering just a single (mean) specific rate for each elementary step of the overall conversion, 

they are often better applied to chemical reactions in the solution phase on most time-scales.


