Supporting Information

Design and Synthesis of Vanadate-Based Ratiometric Fluorescence Probe for Sequential Recognition of Cu²⁺ and Biothiol

Hui-Hui Zeng,* Zhi-Ying Zhou, Fang Liu, Jie Deng, Shu-Yun Huang, Guo-Ping Li,

Pei-Qing Lai, Yue-Ping Xie, Wei Xiao

Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical

Engineering, Pingxiang University, Pingxiang 337055, China

* Corresponding author. Tel: +86 13479865212. E-mail address: zenghuihui1022@163.com

TABLE OF CONTENTS

- 1. TEM and HRTEM image of YVO₄:Eu³⁺ (Figure S1)
- 2. Full range XPS spectra of CDs (Figure S2)
- 3. The excitation spectrum of YVO₄:Eu³⁺ (Figure S3)
- 4. UV-Vis spectra of CDs, YVO₄:Eu³⁺ nanoparticles, and YVO₄:Eu³⁺@CDs (Figure S4)
- 5. ζ-potentials of CDs, YVO₄:Eu³⁺, YVO₄:Eu³⁺@CDs (Figure S5)
- 6. Studies on the doping concentration of Eu³⁺ ions in YVO₄:Eu³⁺ (Figure S6)
- 7. Studies on the stability of YVO₄:Eu³⁺@CDs (Figure S7)
- 8. UV-vis spectra of YVO₄:Eu³⁺@CDs before and after added Cu²⁺ ions and L-Cys (Figure S8)
- 9. ζ-potentials of YVO₄:Eu³⁺@CDs before and after added Cu²⁺ ions and L-Cys (Figure S9)
- 10. Selectivity study of ions on YVO₄:Eu³⁺@CDs (Figure S10)
- 11. Optimization of the pH for Cu²⁺ ions detection (Figure S11)
- 12. Reaction time study (Figure S12)
- 13. Optimization of the concentration of Cu^{2+} (Figure S13)
- 14. Optimization of the time for Cu²⁺ ions detection (Figure S14)
- 15. Studies on optimal YVO₄:Eu³⁺@CDs concentration for Cys detection (Figure S15)
- 16. Optimization of the pH for L-Cys detection (Figure S16)
- 17. Studies on Effect of pH and salt concentration upon YVO₄:Eu³⁺@CDs (Figure S17)
- 18. Studies on Effect of salt concentration upon YVO₄:Eu³⁺@CDs (Figure S18)
- 19. FL spectra of YVO₄:Eu³⁺@CDs for GSH detection. (Figure S19)
- 20. FL spectra of YVO₄:Eu³⁺@CDs for GSH detection. (Figure S20)
- 21. Selectivity study (Figure S21)

- 22. Comparison of different method for Cu^{2+} ions detection (Table S1)
- 23. Comparison of different method for biothiol molecule detection (Table S2)
- 24. Determination of Cu²⁺ ions in human plasma (Table S3)

Figure S1 TEM image of YVO_4 :Eu³⁺. Insert shows the high-resolution TEM (HRTEM) image of YVO_4 :Eu³⁺ (200 crystal plane)

Figure S3 the fluorescence spectrum of YVO4:Eu3+. Inset shows the photograph of YVO4:Eu3+

under daylight (left) and a 254 nm UV lamp (right), respectively.

Figure S4 UV-Vis absorption spectra of CDs, YVO₄:Eu³⁺ nanoparticles, and YVO₄:Eu³⁺@CDs

Figure S5 The ζ-potentials of CDs, YVO₄:Eu³⁺, YVO₄:Eu³⁺@CDs

Figure S6 the FL spectrum of YVO₄:Eu³⁺ (0.625 μ M) with different doping concentration of Eu³⁺

Figure S7 the FL intensity of 617 nm fluorescence peak of $YVO_4{:}Eu^{3+}@CDs~(0.625~\mu M)$ at different day

Figure S8 UV-vis absorption spectra of YVO₄:Eu³⁺@CDs before and after added Cu²⁺ ions and L-

Figure S9 The ζ -potentials of YVO₄:Eu³⁺@CDs (0.625 μ M) (a), YVO₄:Eu³⁺@CDs added Cu²⁺ (b), YVO₄:Eu³⁺@CDs added Cu²⁺ and L-Cys (c). The concentration of Cu²⁺ ions and L-Cys is 2 μ M,

Figure S10 the fluorescence intensity of YVO_4 :Eu³⁺@CDs (0.625 µM) at 617 nm in the presence of different ions. The concentration of all ions is 2µM.

Figure S11 optimization of the pH for Cu^{2+} ions detection, where F_{617} and F_{405} are the FL intensities of YVO₄:Eu³⁺@CDs (0.625 μ M) at 617 nm and 405 nm in the presence of Cu²⁺ ions (2 μ M)

Figure S12 optimization of the time for Cu²⁺ ions detection with the fluorescence intensity of YVO_4 :Eu³⁺@CDs (0.625 μ M) at 617 nm

Figure S13 optimization of the concentration of Cu^{2+} . Where F_0 and F are the FL intensities of YVO₄:Eu³⁺@CDs (0.625 μ M) at 617 nm before and after adding Cu²⁺, respectively.

Figure S14 optimization of the concentration of $YVO_4:Eu^{3+}@CDs$ for Cys detection. Where F_0 and F are the FL intensities of $YVO_4:Eu^{3+}@CDs$ at 617 nm before and after adding Cys, respectively

Figure S15 Time-dependent PL responses of YVO_4 :Eu³⁺@CDs (0.625 μ M) upon addition of different concentrations of Cys, 10 μ M (black line), 4 μ M (red line), 2 μ M (blue line), 0.1 μ M (green line).

Figure S16 optimization of the pH for L-Cys detection, where F_{617} and F_{405} are the FL intensities of YVO₄:Eu³⁺@CDs (0.625 μ M) at 617 nm and 405 nm in the presence of Cu²⁺ ions (2 μ M) and L-Cys (2 μ M)

Figure S17 Effect of pH on the FL intensity of 617 nm fluorescence peak of $YVO_4:Eu^{3+}@CDs$ (0.625 μ M).

Figure S18 Effect of the concentration of NaCl on the FL intensity of 617 nm fluorescence peak of YVO_4 :Eu³⁺@CDs (0.625 µM).

Figure S19 A) the FL spectrum of YVO₄:Eu³⁺@CDs (0.625 μ M) at different concentration of GSH. B) Plot of F₆₁₇/F₄₀₅ against the concentrations of GSH ranging from 0 to 6 μ M (where F₆₁₇ and F₄₀₅ are the FL intensities of YVO₄:Eu³⁺@CDs at 617 and 405 nm, respectively).

Figure S20 A) the FL spectrum of YVO₄:Eu³⁺@CDs (0.625 μ M) at different concentration of Hcy. B) Plot of F₆₁₇/F₄₀₅ against the concentrations of Hcy ranging from 0 to 6 μ M (where F₆₁₇ and F₄₀₅ are the FL intensities of YVO₄:Eu³⁺@CDs at 617 and 405 nm, respectively).

Figure S21 Selectivity competition experiments for YVO_4 :Eu³⁺@CDs (0.625 µM) toward different interferences. All amino acid were at a concentration of 10 µM.

Analyst method	probe	Linear range (µM)	LOD (µM)	Refer
electrochemical	α-synuclein		50 µM	[1]
electrochemical	Cu ²⁺ -EDTA chelates	10~1000 µg/L	5.16 nM	[2]
colorimetric	DNA/Au NPs	0.625~15	0.29 µM	[3]
colorimetric	Organic phenol probe		4.33 µM	[4]
colorimetric	Ag NPs	0.1~10	0.5 μΜ	[5]
fluorescence	Ir(III) complexes	0~2.0 eq	$2.23\times10^{2}\mu M$	[6]
fluorescence	Au NCs	0~60	0.08 µM	[7]
fluorescence	Graphene QDs	0~15	0.23 µM	[8]
fluorescence	Benzothiazole		41.71 nM	[9]
fluorescence	YVO ₄ :Eu ³⁺ @CDs	0.001~2	0.2 nM	In this work

Table S1 Comparison of different method for Cu²⁺ ions detection

Table S2 Comparison of different method for biothiol detection

Analyst method	probe	Linear range (µM)	LOD (µM)	Refer
electrochemical	Au NPs/Bi ₄ NbO ₈ Cl	0.1~5	0.01 µM	[10]
colorimetric	Organic phenol probe	_	4.27 μΜ	[4]
fluorescence	N-GQD	15~125	0.05 μΜ	[11]
fluorescence	TCF	_	0.28 µM	[12]
fluorescence	Graphene quantum dots	_	0.15 μΜ	[13]
fluorescence	organic QG-1	_	5.4 mM	[14]
fluorescence	Organic BODYPY dye	_	0.096 µM	[15]
fluorescence	YVO ₄ :Eu ³⁺ @CDs	0.2~6	72 nM	In this work

Table S3 Determination of Cu²⁺ ions in human plasma

sample	Added	Detected ^a	Recovery ^b	Detected ^c	RSD (n=3,
	(µM)	(mean, μM)	(%)	(mean, µM)	%)
Plasma 1	0.0	16.250		16.196	2.1
	1.0	17.136	88.6		2.6
	2.0	18.402	107.6		1.0
Plasma 2	0.0	20.124		20.132	2.9
	1.0	21.210	108.6		1.8
	2.0	22.050	96.3		2.2

^a The measurement results by using the present method

^b Mean of three determinations.

^c The measurement results by using the atomic absorption spectrometry method.

Reference

1.S. Li and K. Kerman, Electrochemical Detection of Interaction between Copper(II) and Peptides Related to Pathological α-Synuclein Mutants, *Anal. Chem.*, 2019, **91**, 3818-3826.

2.Q. Shu, M. Liu, H. Ouyang and Z. Fu, Label-free fluorescent immunoassay for Cu²⁺ ion detection based on UV degradation of immunocomplex and metal ion chelates, *Nanoscale*, 2017, **9**, 12302-12306. 3.Y. Wang, F. Yang and X. Yang, Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes, *Nanotechnology*, 2010, **21**, 205502.

4.B. Saha, P. Saha, A. Mandal, J. P. Naskar, D. Maiti and S. Chowdhury, Sequential detection of Cu²⁺ and cysteine using an imidazole-based chemosensor in aqueous solution, *J. Chin. Chem. Soc-taip*, 2019, **66**, 506-514.

5.L.-J. Miao, J.-W. Xin, Z.-Y. Shen, Y.-J. Zhang, H.-Y. Wang and A.-G. Wu, Exploring a new rapid colorimetric detection method of Cu²⁺ with high sensitivity and selectivity, *Sensor Actuat B-chem.*, 2013, **176**, 906-912.

6.T. Yu, Y. Wang, Z. Zhu, Y. Li, Y. Zhao, X. Liu and H. Zhang, Two new phosphorescent Ir(III) complexes as efficient selective sensors for the Cu²⁺ ion, *Dyes Pigments*, 2019, **161**, 252-260.

7.H. Ding, C. Liang, K. Sun, H. Wang, J. K. Hiltunen, Z. Chen and J. Shen, Dithiothreitol-capped fluorescent gold nanoclusters: An efficient probe for detection of copper(II) ions in aqueous solution, *Biosens. Bioelectron.*, 2014, **59**, 216-220.

8.F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia and Q. Hao, Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions, *Sensor Actuat B-chem.*, 2014, **190**, 516-522.

9.X. Tian, Y. Zhao, Y. Li, C. Yang and Z. Zhou, Sensitive and selective ratiometric nanosensors for visual detection of Cu²⁺ based on ions promoted oxidation reaction, *Sensor Actuat B-chem.*, 2017, **247**, 139-145.

10.Y.-F. Ruan, N. Zhang, Y.-C. Zhu, W.-W. Zhao, J.-J. Xu and H.-Y. Chen, Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi₄NbO₈Cl, *Anal. Chem.*, 2017, **89**, 7869-7875.

11. A. B. Ganganboina, A. Dutta Chowdhury and R.-a. Doong, N-Doped Graphene Quantum Dots-Decorated V₂O₅ Nanosheet for Fluorescence Turn Off–On Detection of Cysteine, *ACS Appl. Mater & Inter.*, 2018, **10**, 614-624.

12. Sedgwick, Adam C. Gardiner, Jordan E. Kim, Gyoungmi Yevglevskis, Maksims Lloyd, Matthew D. Jenkins, A. Toby A. Bull, Steven D. Yoon, Juyoung James, Tony D. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols, *Chem. Commun.*, 2018, 54, 4786-4789.

13. X. Yan, Y. Song, C. Zhu, J. Song, D. Du, X. Su and Y. Lin, Graphene Quantum Dot–MnO₂ Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence "Turn Off–On" Nanosensor for Glutathione Detection and Intracellular Imaging, *ACS Appl. Mater & Inter.*, 2016, **8**, 21990-21996.

14. Liu, Z.; Zhou, X.; Miao, Y.; Hu, Y.; Kwon, N.; Wu, X.; Yoon, J., A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione. *Angew. Chem. Int. Ed.*, **2017**, 56 (21), 5812-5816.

15. Yang, X. F.; Huang, Q.; Zhong, Y.; Li, Z.; Li, H.; Lowry, M.; Escobedo, J. O.; Strongin, R. M., A Dual Emission Fluorescent Probe Enables Simultaneous Detection of Glutathione and

Cysteine/Homocysteine. Chem. Sci., 2014, 5 (6), 2177-2183.