Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2019

> Versatile Printed Microheaters to Enable Low-Power Thermal Control in Paper Kristin M. Byers¹, Li-Kai Lin², Taylor J. Moehling¹, Lia Stanciu², Jacqueline C. Linnes^{1*} 1 Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN 2 School of Materials Engineering, Purdue University, West Lafayette IN *jlinnes@purdue.edu

SUPPLEMENTAL INFORMATION

Table S1: Nucleotide sequences of LAMP primers that target the V. cholerae ctxA gene.

Primer	Sequence (5' – 3')
B3	GTGGGCACTTCTCAAACT
F3	TCGGGCAGATTCTAGACC
BIP	TCAACCTTTATGATCATGCAAGAGGGGAAACATATCCATCATCGTG
FIP	TTGAGTACCTCGGTCAAAGTACTTCCTGATGAAATAAAGCAGTCA
LB- FITC	/56-FAM/AACTCAGACGGGATTTGTTAGG
LF- Biotin	/5-Biosg/CCTCTTGGCATAAGACCACC

Figure S1: Microheaters designs summary. The top set of designs is useful for heating short regions of lateral flow assays while the lower set of designs is useful for chips or 2-Dimensional Paper Network devices with wide heating regions.

Design	1_1	2_1	1_2	2_2	1_3	Α	В	С	D
Path length (mm)	46.14	32.45	46.14	32.45	46.14	82.03	105.19	147.82	177.38
Stroke/width (mm)	0.53	0.35	0.35	0.18	0.18	0.70	0.70	0.70	0.70
Heating Area	4.8 x	3.8 x	4.6 x	3.6 x	4.4 x	11.9 x	14.5 x	20.1 x	23.7 x
(mm x mm)	8.75	8.75	8.75	8.75	8.75	9.2	11.3	15.4	18.3
Calculated Resistance	5.4	5.7	8.0	11.3	16.1	7.2	9.2	13.0	15.6

Table S2: Microheaters design details and resistance predictions given ink resistivity of 4.3E-5 Ohms*mm and printed trace height of 700 nm.

Figure S2: Setup for incubations powered by AA battery. Box was closed after initiation.

Model Input	Source	Design 1_1	Design A						
Simulation Time	-	30 min	5 hours						
Terminal voltage (V)	-	1.2	1.2						
Ambient Heat Flux W/(m ² K)	Manually Tuned	33	33						
Trace Thickness -Shell (nm)	Experimental Data	1000	700						
Trace Conductivity (S/m)	Experimental Data	2.3×10^7	2.3×10^7						
Sample Dimensions (mm)	Manually Measured	7x7	10 x 10						
Total Chip Dimensions (mm)	Manually Measured	15 x 15	25 x 25						
Microheater Heating Region Dimensions (mm)	Manually Measured	5 x 9	12 x 10						
Model Output									
Resistance (Ω)	-	6.6	8.5						
Terminal current (A)	-	0.18	0.14						
Bottom of Chip Max Temperature (°C)	-	71	43						
Top of Chip Max Temperature (°C)	-	63	35						
Max Sample Temperature (°C)	-	67	37						
Average Sample Volume Temperature (°C)	-	63	35						

Table S3: COMSOL Model Inputs & Outputs

Figure S3: Representative graphs of profilometry data. The z height of the single layer nanosilver ink prints varies between the different designs and also appears to vary within a single print as well. There does appear to be some correlation between trace width and z height as thinner designs produced higher z height despite using the same print settings (35μ m drop spacing etc.). Other sampling locations on different prints showed z heights between 1 and 1.3 μ m.

Figure S4: Microheater Performance Thermal IR Analysis Designs 1_1 and A. Voltages of 0.6V, 0.8V, 1V were applied to design 1_1 (A, B,C) and Design A (D, E, F) for five minutes each while under video recording with the IR camera.

	Table S4: Microheater reusabilit	y repeated	heating statistica	ıl summary
--	---	------------	--------------------	------------

	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10
Number of values	901	901	901	901	901	901	901	901	901	901
Minimum	25.00	24.10	24.20	25.90	25.10	26.70	24.80	24.70	24.40	24.80
25% Percentile	68.40	68.20	68.30	68.80	68.50	68.70	68.20	68.45	68.40	68.20
Median	69.20	69.30	69.30	69.60	69.40	69.50	69.00	69.30	69.30	69.20
75% Percentile	69.50	69.50	69.70	69.80	69.80	69.90	69.20	69.50	69.60	69.50
Maximum	69.60	69.70	69.80	70.00	69.90	70.00	69.70	69.50	69.70	69.50
Mean	67.87	67.74	67.90	68.27	68.08	68.28	67.75	67.88	67.88	67.76
Std. Deviation	4.52	4.89	4.71	4.55	4.59	4.31	4.68	4.70	4.87	4.67
Std. Error of Mean	0.15	0.16	0.16	0.15	0.15	0.14	0.16	0.16	0.16	0.16
Lower 95% CI	67.57	67.42	67.59	67.98	67.78	68.00	67.44	67.57	67.56	67.46
Upper 95% CI	68.17	68.06	68.21	68.57	68.39	68.56	68.05	68.19	68.20	68.07

Test	Mean Diff.	95.00% CI of diff.	Significant?	Adjusted P Value	
Trial 1 vs. Trial 2	0.1326	-0.5614 to 0.8266	No	0.9999	A-B
Trial 1 vs. Trial 3	-0.03052	-0.7245 to 0.6635	No	>0.9999	A-C
Trial 1 vs. Trial 4	-0.4046	-1.099 to 0.2894	No	0.7065	A-D
Trial 1 vs. Trial 5	-0.2143	-0.9083 to 0.4797	No	0.9935	A-E
Trial 1 vs. Trial 6	-0.4075	-1.102 to 0.2864	No	0.6974	A-F
Trial 1 vs. Trial 7	0.1225	-0.5715 to 0.8165	No	>0.9999	A-G
Trial 1 vs. Trial 8	-0.01065	-0.7046 to 0.6833	No	>0.9999	A-H
Trial 1 vs. Trial 9	-0.01088	-0.7049 to 0.6831	No	>0.9999	A-I
Trial 1 vs. Trial 10	0.1084	-0.5856 to 0.8024	No	>0.9999	A-J
Trial 2 vs. Trial 3	-0.1632	-0.8571 to 0.5308	No	0.9992	B-C
Trial 2 vs. Trial 4	-0.5372	-1.231 to 0.1568	No	0.2966	B-D
Trial 2 vs. Trial 5	-0.3469	-1.041 to 0.3470	No	0.8572	B-E
Trial 2 vs. Trial 6	-0.5402	-1.234 to 0.1538	No	0.2888	B-F
Trial 2 vs. Trial 7	-0.01010	-0.7041 to 0.6839	No	>0.9999	B-G
Trial 2 vs. Trial 8	-0.1433	-0.8373 to 0.5507	No	0.9997	B-H
Trial 2 vs. Trial 9	-0.1435	-0.8375 to 0.5505	No	0.9997	B-I
Trial 2 vs. Trial 10	-0.02420	-0.7182 to 0.6698	No	>0.9999	B-J
Trial 3 vs. Trial 4	-0.3740	-1.068 to 0.3200	No	0.7927	C-D
Trial 3 vs. Trial 5	-0.1838	-0.8778 to 0.5102	No	0.9980	C-E
Trial 3 vs. Trial 6	-0.3770	-1.071 to 0.3170	No	0.7848	C-F
Trial 3 vs. Trial 7	0.1531	-0.5409 to 0.8470	No	0.9995	C-G
Trial 3 vs. Trial 8	0.01987	-0.6741 to 0.7139	No	>0.9999	C-H
Trial 3 vs. Trial 9	0.01964	-0.6743 to 0.7136	No	>0.9999	C-I
Trial 3 vs. Trial 10	0.1390	-0.5550 to 0.8329	No	0.9998	C-J
Trial 4 vs. Trial 5	0.1902	-0.5038 to 0.8842	No	0.9974	D-E
Trial 4 vs. Trial 6	-0.002997	-0.6970 to 0.6910	No	>0.9999	D-F
Trial 4 vs. Trial 7	0.5271	-0.1669 to 1.221	No	0.3237	D-G
Trial 4 vs. Trial 8	0.3939	-0.3001 to 1.088	No	0.7379	D-H
Trial 4 vs. Trial 9	0.3937	-0.3003 to 1.088	No	0.7386	D-I
Trial 4 vs. Trial 10	0.5130	-0.1810 to 1.207	No	0.3636	D-J
Trial 5 vs. Trial 6	-0.1932	-0.8872 to 0.5008	No	0.9970	E-F

Trial 5 vs. Trial 7	0.3368	-0.3571 to 1.031	No	0.8778	E-G
Trial 5 vs. Trial 8	0.2037	-0.4903 to 0.8977	No	0.9956	E-H
Trial 5 vs. Trial 9	0.2034	-0.4905 to 0.8974	No	0.9956	E-I
Trial 5 vs. Trial 10	0.3228	-0.3712 to 1.017	No	0.9034	E-J
Trial 6 vs. Trial 7	0.5301	-0.1639 to 1.224	No	0.3155	F-G
Trial 6 vs. Trial 8	0.3969	-0.2971 to 1.091	No	0.7292	F-H
Trial 6 vs. Trial 9	0.3967	-0.2973 to 1.091	No	0.7299	F-I
Trial 6 vs. Trial 10	0.5160	-0.1780 to 1.210	No	0.3549	F-J
Trial 7 vs. Trial 8	-0.1332	-0.8272 to 0.5608	No	0.9999	G-H
Trial 7 vs. Trial 9	-0.1334	-0.8274 to 0.5606	No	0.9998	G-I
Trial 7 vs. Trial 10	-0.01410	-0.7081 to 0.6799	No	>0.9999	G-J
Trial 8 vs. Trial 9	-0.0002220	-0.6942 to 0.6938	No	>0.9999	H-I
Trial 8 vs. Trial 10	0.1191	-0.5749 to 0.8131	No	>0.9999	H-J
Trial 9 vs. Trial 10	0.1193	-0.5747 to 0.8133	No	>0.9999	I-J
Decision 4	4 Minuchanten	I ANAD A man life a tian of	V abalaraa Camula	Chim Lleating	Mada

Design 1_1 Microheater, LAMP Amplification of V. cholerae Sample Chip Heating Model

Figure S5: COMSOL Model of Design 1_1 Microheater and LAMP sample assembly, showing heat distributions for the entire outer surface (A and B), the bottom surface of the sample chip (in contact with the heater) (C) Each figure intensity (color gradient) is specific to the temperature scale to the right of each evaluation, please note that the scales are different for each.

Design A Microheater, Detection of *E. coli* Sample Chip Heating Model

Figure S6: COMSOL Model of Design A microheater and *E. coli* sample chip, showing heat distributions for the entire outer surface (A and B), the bottom surface of the sample chip (in contact with the heater) (C). Each figure intensity (color gradient) is specific to the temperature scale to the right of each evaluation, please note that the scales are different for each.

Figure S7: (A) Bending of Design A microheater for the durability test. Strain was calculated based on $\Delta L/L$ for the sample in each direction and resistance was measured after each deformation. Microheater traces for Design A tolerate bending resulting in a strain of \mathcal{E} = 0.16 with only 0.1 Ohm change in resistance after bending in both the concave and convex directions. (B) A series of more aggressive bending on a single Design 1_1 microheater resulted in only minor resistance increases after each treatment. Strains for each bending treatment were $\mathcal{E}1$ =0.25, $\mathcal{E}2$ =0.25, $\mathcal{E}3$ =0.8, $\mathcal{E}4$ =0.7. The resistance was measured before and after each treatment using the two-point probe method (shown in Figure S6).

Table S6: Material cost est	imations per individua	l microheater for E	Design D and I	Design 1 1.
	1		U	<u> </u>

Item	Cost (USD) per microheater (Design D)	Cost (USD) per microheater (Design 1_1)
AgInk	0.035	0.01
Substrate	0.52	0.15
Filter	0.02	0.006
Total \$	0.58	0.17

Figure S8: Low resistance microheaters are possible to create using the technique described in the main text. The design here has fewer serpentine turns resulting in a shorter path length. Specs: trace width: 0.529mm, path length: 24.264 mm, total heating area: 4 mm x 8.8 mm.

Table S7: POC heating methods analysis									
METHOD	COMPATIBILITY FOR POC USE	RAMP- UP TIME	TEMP. ACCURACY	POWER SOURCE	MAXIMUM INCUBATION TIME	HEATER COST (USD)	INTERFACE /POWER COSTS	REUSABLE	REF
HOT PLATE	Not suitable	~5 min.	Moderate (± 5 °C)	Electrical Grid	Grid dependent	\$287 - \$531	N/A	Yes	1
CHEMICAL HEATER	Moderate	5-10 min.	Poor, highly variable	None	$\begin{array}{c} 19.0 \pm 5.0 \\ minutes \end{array}$	\$0.41	\$1.61 (foam housing)	No	2
РСВ	Good	~3 min.	Highly accurate (± 1.5 °C)	Battery /Electrical Grid	Battery/Grid dependent	<\$1/cm ²	Accompanying control units vary from simple boards to entire desktop computers.	Yes	3,4
OMEGA POLYIMIDE HEATER	Moderate	Unknown	Unknown	DC Power Source	Grid dependent	\$52	\$167 DC Power Supply	Yes	5
INKJET PRINTED MICROHEATER	Excellent	5-10 min.	Good (± 2.5 °C from median of desired Temp. window)	Battery or DC Power Source	Battery dependent (30 min. to 16 h)	<\$0.58/heater	\$1.45 for one NiMH AA rechargeable battery	Yes	N/A

Figure S9: Detection of serial dilutions of *E. coli* using PrestoBlueTM. LOD of 37°C after 6 hours is 10^5 colony-forming unit (CFU). After 16 hours limit of detection (LOD) of 37°C is 10^1 CFU. LOD of room temperature samples was 10^6 CFU after 16 hours. Design A microheater (8 Ohms) was used for these trials. Color change for microheater incubations closely match incubator results while room temperature samples did not. Incubator and microheater performance data suggest the microheater incubation could have a similarly low LOD of 10^1 CFU.

REFERENCES

- Thermo Scientific Cimarec+ Hotplate Series:Incubators, Hot Plates, Baths | Fisher Scientific https://www.fishersci.com/shop/products/cimarec-hotplate-series/p-6367014 (accessed Sep 25, 2019).
- (2) Shah, K. G.; Guelig, D.; Diesburg, S.; Buser, J.; Burton, R.; LaBarre, P.; Richards-Kortum, R.; Weigl, B. Design of a New Type of Compact Chemical Heater for Isothermal Nucleic Acid Amplification. *PLoS One* 2015, *10* (10), e0139449. https://doi.org/10.1371/journal.pone.0139449.
- (3) Moschou, D.; Tserepi, A. The Lab-on-PCB Approach: Tackling the MTAS Commercial Upscaling Bottleneck. *Lab Chip* **2017**, *17* (8), 1388–1405. https://doi.org/10.1039/C7LC00121E.
- Hwang, J.-S.; Kim, J.-D.; Kim, Y.-S.; Song, H.-J.; Park, C.-Y. Performance Evaluation of Optimal Real-Time Polymerase Chain Reaction Achieved with Reduced Voltage. *Biomed. Eng. Online* 2018, 17 (S2), 156. https://doi.org/10.1186/s12938-018-0579-0.
- (5) Polyimide Insulated Flexible Heaters | Omega Engineering https://www.omega.com/enus/industrial-heaters/flexible-heaters/khra-khlva-kha-series/p/KHLVA-101-5-P (accessed Sep 25, 2019).