Supporting Information

A label-free fluorescent sensor based on silicon quantum dots- MnO_2 nanosheets for the detection of α -glucosidase and its inhibitor

Jinying Liu, Xinhe Duan, Mengke Wang, Xingguang Su*

Department of Analytical Chemistry, College of Chemistry, Jilin University,

Changchun 130012, PR China

*Corresponding author Tel.: +86-431-85168352 E-mail address: <u>suxg@jlu.edu.cn</u>

Reagents

α-glucosidase was purchased from Sigma Reagents Company. Tetramethylammonium (TMA) was purchase from Beijing Chemical Works. L-ascorbic acid-2-O-α-D-glucopyranosy (AAG), (3-aminopropyl) trimethoxysilane (APTES) and acarbose were purchased from Shanghai Aladdin Co. Ltd. Hydrogen peroxide (H₂O₂), ascorbic acid (AA), glucose, aspartic acid, histidine, and glutamate were purchased from Beijing Dingguo Biotechnology Co. Ltd. MnCl₂·4H₂O, NaCl, CaCl₂, ZnCl₂ were purchased from Tianjin Guangfu Institute of Fine Chemicals. Tyrosinase (TYR), glucose oxidase (GO_X), pepsin, trypsin and protein kinase (PKA) were purchased from Sino-American Biotechnology Co. Ltd. Trisodium citrate was purchased from Sinopharm Chemical Reagent Co. Ltd. All chemicals used were of analytical reagent grade without further purification. Phosphate buffered saline (PBS) was prepared by mixing different ratios of Na₂HPO₄ and NaH₂PO₄ solution. The resistivity of distilled water used in all experiments was higher than 18 MΩ cm⁻¹.

Instruments

Scanning electron microscope (SEM) experiment was performed on a JF6700 scanning electron Microscope (JEOL Ltd, Japan). Fluorescence spectra were collected with a Shimadzu RF-5301 PC spectrofluorophotometer (Shimadzu Co.Ltd, Kyoto, Japan). UV–vis absorption spectra were collected on Varian GBC Cintra 10e UV–visible Spectrophotometer (Shimadzu Co.Ltd, Kyoto, Japan). FT-IR spectra was recorded by using a Bruker IFS66V FT-IR Spectrometer (Bruker Corporation, Germany). All pH measurements throughout the study were performed with a PHS-3C pH meter (INESA Scientific Instrument Co. Ltd, Shanghai, China).

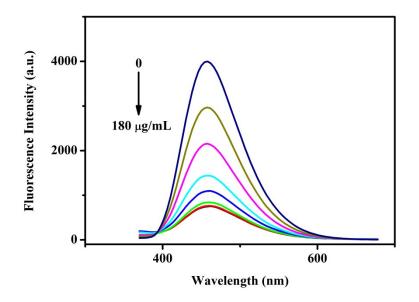


Fig. S1. Fluorescence emission spectra of SiQDs with different concentrations of MnO_2 nanosheets (0, 20, 40, 80, 120, 140, 160 and 180 µg mL⁻¹).

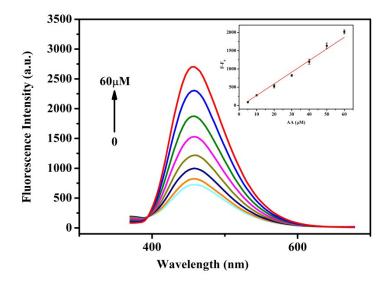


Fig. S2. Fluorescence emission spectra of SiQDs/MnO₂ nanosheets with different concentrations of AA (0, 5, 10, 20, 30, 40, 50 and 60 μ M).

Sample	Added	Founded (U/mL)		Recovery	RSD (n=3,%)
	(U/mL)	Colorimetry	Our method	(%)	
serum	0	0.060	0.063	-	-
	0.050	0.13	0.11	94.00	0.75
	0.10	0.16	0.17	107.0	3.24
	0.45	0.47	0.50	97.11	2.50

Table S1. Detection of α -glucosidase in human serum samples

Table S2. Comparison of our method with the previous methods for the detection of α -glucosidase

Methods	Materials	Linear range	LOD	Reference
		(U/mL)	(U/mL)	
Colorimetric assay	Gold nanoparticles	0.05 - 1.1	0.004	[1]
Fluorescence assay	N-doped CDs	0.2 - 10	0.01	[2]
Fluorescence assay	Conjugated polymer and	0.1 - 0.5	0.01	[3]
	PNPG			
Electrochemical assay	Gold nanoparticle-modified	0.1 – 1.1	0.04	[4]
	gold electrode			
Electrochemical assay	AgNPs/DA and MNPs/	0 - 1.1	0.04	[5]
	pAPG with PBA/GE	0 - 1.1		
Fluorescence assay	SiQDs/MnO ₂ nanosheets	0.02 - 2.5	0.007	This work

Methods	Materials	Linear range (µM)	IC50 (µM)	Reference
Fluorescence assay	N-doped CDs	0.1 - 1000	58.68	[2]
Colorimetric assay	Gold nanoparticles	_	5.87	[6]
Fluorescence assay	β-CD-CQDs nanoprobe	50 - 500	319	[7]
Fluorescence assay	N,B-CDs	0.03-5000	58	[8]
Fluorescence assay	SiQDs/MnO2 nanosheets	1-1000	33.88	This work

Table S3. Comparison of our method with the previous methods for the detection of acarbose

References

- 1. J. Zhang, Y. Liu, J. Lv and G. Li, Nano Research, 2014, 8, 920-930.
- W. Kong, D. Wu, L. Xia, X. Chen, G. Li, N. Qiu, G. Chen, Z. Sun, J. You and Y. Wu, *Anal Chim Acta*, 2017, 973, 91-99.
- 3. A. Cao, Y. Tang and Y. Liu, ACS Appl Mater Interfaces, 2012, 4, 3773-3778.
- 4. J. Zhang, Y. Liu, J. Lv, Y. Cao and G. Li, Microchimica Acta, 2014, 182, 281-288.
- 5. J. Zhang, Y. Liu, X. Wang, Y. Chen and G. Li, Biosens Bioelectron, 2015, 74, 666-672.
- 6. H. Chen, J. Zhang, H. Wu, K. Koh and Y. Yin, Anal Chim Acta, 2015, 875, 92-98.
- 7. C. Tang, Z. Qian, Y. Qian, Y. Huang, M. Zhao, H. Ao and H. Feng, Sensors and Actuators B: Chemical, 2017, 245, 282-289.
- 8. S. Huang, E. Yang, J. Yao, Y. Liu and Q. Xiao, Mikrochim Acta, 2018, 185, 394.