Supporting Information

3D Paper-Based Microfluidic Device: A Novel Dual-Detection Platform of Bisphenol A

Jutiporn Yukird^a, Veasna Soum^b, Oh-Sun Kwon^b, Kwanwoo Shin^b, Orawon Chailapakul^{c*}, Nadnudda Rodthongkum^{d*}

^a Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand

^b Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea

^c Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand

^d Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Patumwan, Bangkok 10330, Thailand

*Corresponding authors at E-mail addresses: <u>Nadnudda.r@chula.ac.th</u>, <u>corawon@chula.ac.th</u>

Figure S1. Illustration of the stacked layer of μPADs, fabricated from i.) planar surface (paper),ii) lateral-flow channel (plastic tape) and iii.) cover (plastic tape).

Figure S2. The temperature dependence of the resistivity for electrode printing with AgNPs line (A) and MWCNTs line (B).

Figure S3. Cyclic voltammograms of 1.0 mM [Fe(CN)₆] $^{3-/4-}$ measured on MWCNTs electrode in KCl solution at different scan rates (0.2–1.5 V/s).

Figure S4. Cyclic voltammograms of 1.0 mM [Fe(CN)6]^{3-/4-} measured on an unmodified electrode (red line) and ZnO/MWCNTs electrode (blue line).

Figure S5. The oxidation peak currents of 0.5 mM BPA obtained from differential pulse voltammetry (DPV) with different ZnO concentrations modified electrode.

 Table 1 Comparison of the analytical performances for BPA determination by using different modified electrodes.

Modified electrode	Reaction	Diameter	Method	Linear range	Detection	Ref.
		of WE			limit	
Graphene modified glassy carbon	Non-		DPV	0.5 nM to 1.0	0.47 uM	[1]
electrode	enzymatic		DIV	μΜ	0.47 μινι	[1]
Reduce graphene oxide/melamine nanoparticle-modified glassy carbon electrode	Non- enzymatic	3.0 mm	DPV	0.1 nM to 20 mM	4.0 nM	[2]
CTAB micellar medium on a	Non-	2.0 mm	SWV	1.0 to 10 uM	0.51 uM	[3]
screen-printed carbon electrode	enzymatic		2	1.0 00 10 µ	0.01 p.1.1	[0]
Single-walled carbon nanotubes/poly{3-butyl-1-[3-(N- pyrrolyl)propyl] imidazolium ionic liquid composite film modified glassy carbon electrode	Non- enzymatic	3.0 mm	DPV	5.0 to 0.3 μM	1.0 nM	[4]
Stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode	Non- enzymatic	3.0 mm	LSV	0.08 to 250 μM	0.35 µM	[5]
<i>f</i> -SWCNT and carboxylic group functionalized PEDOT modified GCE	Non- enzymatic	3.0 mm	CV	0.099 to 5.79 μM	0.32 µM	[6]
PEDOT-modified glassy carbon	Non-	on- 3.0 mm	Ampero-	40.0–410 μM	22 µM	[7]
electrodes	enzymatic		metry			
Molecularly imprinted polymers and gold nanoparticles modified GCE	Non- enzymatic	3.0 mm	Ampero- metry	8.0 μM–0.6 mM	0.38 µM	[8]
Nitrogen-doped carbon nanofiber	Non-	-	DPV	0.1 – 60 μM	0.50 µM	[9]

modified carbon paste electrode	enzymatic					
ZnO/NPs carbon ionic liquid paste	Non-		CUUL	0.002 - 700	0.0.14	[10]
electrode	enzymatic	-	SWV	μΜ	9.0 nM	[10]
CuO-ZnO/GO modified glassy	Non-			3.0 nM - 0.1		
carbon electrodes	enzymatic	-	SWV	μΜ	0.88 nM	[11]
	Non-					This
MWCNTs electrode	enzymatic	2.0 mm	DPV	0.1 - 0.5 mM	6.0 μM	work
1.0 wt% ZnO modified MWCNTs	Non-	• •		10 µM – 5		This
electrode	enzymatic	2.0 mm	DPV	mM	0.35 μΜ	work

References

- B. Ntsendwana., B.B.M., S. Sampath., O.A. Arotiba., Electrochemical Detection of Bisphenol A Using Graphene-Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 7(2012) 3501 - 3512.
- Shen, R., W. Zhang, Y. Yuan, G. He, and H. Chen, Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode. Journal of Applied Electrochemistry. 45(4)(2015) 343-352.
- Brugnera, M.F., M.A.G. Trindade, and M.V.B. Zanoni, Detection of Bisphenol A on a Screen-Printed Carbon Electrode in CTAB Micellar Medium. Analytical Letters. 43(18)(2010) 2823-2836.
- Chen, X., T. Ren, M. Ma, Z. Wang, G. Zhan, and C. Li, Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode. Electrochimica Acta. 111(2013) 49-56.

- Niu, X., W. Yang, G. Wang, J. Ren, H. Guo, and J. Gao, A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochimica Acta. 98(2013) 167-175.
- Zhang, L., Y.-P. Wen, Y.-Y. Yao, Z.-F. Wang, X.-M. Duan, and J.-K. Xu, Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chinese Chemical Letters. 25(4)(2014) 517-522.
- Mazzotta, E., C. Malitesta, and E. Margapoti, Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes. Analytical and Bioanalytical Chemistry. 405(11)(2013) 3587-3592.
- Qurashi, A., J.A. Rather, K. De Wael, B. Merzougui, N. Tabet, and M. Faiz, Rapid microwave synthesis of high aspect-ratio ZnO nanotetrapods for swift bisphenol A detection. Analyst. 138(17)(2013) 4764-4768.
- Sun, J., Y. Liu, S. Lv, Z. Huang, L. Cui, and T. Wu, An Electrochemical Sensor Based on Nitrogen-doped Carbon Nanofiber for Bisphenol A Determination. Electroanalysis. 28(3)(2016) 439-444.
- Najafi, M., M.A. Khalilzadeh, and H. Karimi-Maleh, A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chemistry. 158(2014) 125-131.
- Ulubay Karabiberoğlu, Ş., Sensitive Voltammetric Determination of Bisphenol A Based on a Glassy Carbon Electrode Modified with Copper Oxide-Zinc Oxide Decorated on Graphene Oxide. Electroanalysis. 31(1)(2019) 91-102.