SUPPORTING INFORMATION

Pyridine-Hydrazone-Controlled Cyanide Detection in Aqueous Media and Solid-State: Tuning the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence Modulated by Intramolecular NH···Br Hydrogen Bonding

Caihui Rao, Zhichao Wang, Zheyao Li, Lu Chen, Chao Fu, Tingting Zhu, Xi Chen, Zhonghua Wang* and Chuanxiang Liu*

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, P. R. China

Email: cxliu@sit.edu.cn; wzhsit@163.com

Table of contents

General methods	2
Synthesis of compounds	2
The theoretical DFT calculations of compounds 4a-4c	5
NMR and HRMS spectra of compound 4a-c	5
Solvent effect of probe 4a- <i>E</i>	9
Interference experiments and titration spectra of the control probes	10
Job plot diagram	11
Influence of pH on the absorbance of the probe 4a	11
pKa of NH group	11
Emission response of 4a and control probe 4b- <i>E</i>	12
Solid state fluorescence	13
Reversibility and reusability in solution	13
Colorimetric assays in the paper test strip	14
¹ H-NMR titration spectra of probe 4a - <i>E</i> and control probes	14
¹ H-NMR spectra time-dependent response	16
Solvent effect and pertinent photophysical data	17
Table S1: optical data of 4a-c measured at room temperature	27
Table S2: Recovery data for CN ⁻ detection in spiked water samples	29
NMR spectra of intermediate compounds	

General methods

Unless otherwise noted, solvents and reagents were analytical grade and used without further purification. THF were distilled from Na prior to use. Flash chromatography was carried out on silica gel (200–300 mesh). UV-visible absorption spectra were obtained on a SHIMADZU UV-1800 spectrophotometer. Fluorescence emission spectra were obtained on a Edinburgh Instruments FS5 Fluorescence spectrophotometer. ¹H-NMR spectra were recorded on Bruker AVANCE III 500 MHz (500 MHz for ¹H-NMR) and ¹³C-NMR spectra were recorded on Bruker AVANCE III 500 MHz (125 MHz for ¹³C-NMR), and chemical shifts were reported in parts per million (ppm, δ) downfield from internal standard Me₄Si (TMS). Multiplicities of signals are described as follows: s --- singlet, d --- doublet, dd --- doublet d, t --- triplet, m --- multiplet. HRMS were recorded on solanX 70 FT-MS spectrometer with methanol and water (v/v = 1:1) as solvent.

Synthesis of compounds

Synthesis of the intermediates: (a) DCM/HNO₃, rt, 90.1%; (b) $K_2Cr_2O_7/AcOH$, reflux, 66.3%; (c) $C_4H_9NH_2$ /AcOH, reflux, 67.1%; (d) Pa/C, H₂, r.t, 95.2%; (e) Br₂, ice bath, 90.5%; (f) NBS, DMF, r.t, 80.3%; (g) fuming HNO₃/AcOH, ice bath, 53.1%; (h) $K_2Cr_2O_7/AcOH$, reflux, 58.8% (i) $C_4H_9NH_2$ /AcOH, reflux, 77.6%; (j) SnCl₂/AcOH, r.t, 94.1%; (k) $C_4H_9NH_2$ /EtOH, reflux, 79.6%; (l) Br₂, ice bath, **14** (50.1%), **15** (29.6), **1c** (8.6%).

Scheme S1 Synthesis of the probe 4

Synthetic procedures

6-amino-2-butyl-1H-benzo[*de*]isoquinoline-1,3(2H)-dione (1a) was synthesized according to the literature reported procedure

6-amino-7-bromo-2-butyl-1H-benzo[*de*]**isoquinoline-1,3(2H)-dione** (1b) was synthesized according to the literature reported procedure

Synthesis of 4a-E, 4a-Z and 4b-E is according to the literature reported procedure

General procedure: The compound 1 (1a and 1b) was added to a mixture of 2 mL HCl (or H_2SO_4) and 3 mL of ice cold water. The solution was stirred at 0 °C for 30 min. Sodium nitrite (1.0 equiv.) was dissolved in 1 mL of water maintaining a similar cold temperature. The sodium nitrite solution was then slowly added to the solution of 1 over a period of 1 hour. In a separate round bottomed flask compound 2-cyanomethylpyridine (1.1 equiv.) and sodium acetate (6.0 equiv.) was stirred in ethanol/water (9 ml/3 ml) solution for 1 hour at 0 °C. The diazotized solution was then added drop-wise to the cooled (0 °C) solution containing the 2-cyanomethylpyridine salt. After the addition was completed, the resulting reaction mixture was stirred at room temperature 3h. The precipitated product was collected by filtration and thoroughly washed with cold water. The crude product was purified by column chromatography (DCM/PE) to give the hydrazone 4 (4a-*E*, 4a-*Z*, 4b-*E* and 4c-*Z*) as a yellow solid.

(*E*)-N'-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[*de*]isoquinolin-6-yl)picolinohydrazonoyl cyanide (**4a**-*E*)

This compound was prepared from coupling of 1a with 2-cyanomethylpyridine.

Yield (42.05%).¹H-NMR (500 MHz, CDCl₃) δ [ppm]: 16.16 (s, 1H), 8.87 (d, J = 4.5 Hz, 1H), 8.64 (d, J = 7.0 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.06 (td, $J_1 = 1$ Hz, $J_2 = 7.5$ Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.53 (m, 1H), 4.18 (t, J = 8.0 Hz, 2H), 1.73 (m, 2H), 1.46 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ [ppm]: 164.19, 163.74, 151.50, 147.68, 142.92, 138.65, 133.07, 133.00, 131.38, 129.35, 126.69, 125.94, 124.42, 123.58, 120.46, 117.25, 116.67, 116.36, 110.30, 40.35, 30.38, 20.55, 13.98. HRMS (ESI): [M + H]⁺ calcd for C₂₃H₁₉N₅O₂: 398.1617; found 398.1627.

(*Z*)-N'-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[*de*]isoquinolin-6-yl)picolinohydrazonoyl cyanide (**4a**-*Z*)

This compound was prepared from coupling of 1a with 2-cyanomethylpyridine.

Yield (45.95%). ¹H-NMR (500 MHz, CDCl₃) δ [ppm]: 9.75 (s, 1H), 8.73 (d, J = 4.5 Hz, 1H), 8.69 (d, J = 7.0 Hz, 1H), 8.63 (d, J = 8.0 Hz, 1H), 8.32 (d, J = 8.5 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.84 (m, 2H), 7.38 (m, 1H), 4.18 (t, J = 8.0 Hz, 2H), 1.73 (m, 2H), 1.46 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ [ppm]: 164.07, 163.72, 150.40, 149.97, 141.36, 137.06, 132.75, 131.75, 129.35, 126.99, 124.92, 124.65, 123.71, 122.89, 122.11, 119.71, 117.35, 110.96, 110.68, 40.39, 30.35, 20.53, 13.97. HRMS (ESI): [M + H]⁺ calcd for C₂₃H₁₉N₅O₂: 398.1617; found 398.1645.

(*E*)-N'-(7-bromo-2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[*de*]isoquinolin-6-yl)picolinohydrazonoyl cyanide (**4b**-*E*)

This compound was prepared from coupling of 1b with 2-cyanomethylpyridine.

Yield (69.92%). ¹H-NMR (500 MHz, CDCl₃) δ [ppm]: 15.94 (s, 1H), 8.69 (d, J = 4.5 Hz, 1H), 8.64 (d, J = 8.5 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 7.5 Hz, 1H), 7.99 (dd, $J_1 = 1.5$ Hz, $J_2 = 8.0$ Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.47 (m, 1H), 4.15 (t, J = 7.5 Hz, 2H), 1.72 (m, 2H), 1.45 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ [ppm]: 163.74, 163.30, 150.41, 147.84, 143.95, 138.42, 133.62, 133.34, 131.68, 131.37, 124.51, 123.40, 122.97, 119.95, 117.84, 117.63, 116.55, 115.02, 40.48, 30.25, 20.51, 13.94. HRMS (ESI): [M + H]⁺ calcd for C₂₃H₁₈BrN₅O₂: 478.0702; found 478.0704.

(Z)-N'-(5-bromo-2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)picolinohydrazonoyl cyanide

This compound was prepared from coupling of 1c with 2-cyanomethylpyridine.

Yield (78.28%). ¹H-NMR (500 MHz, CDCl₃) δ [ppm]: 10.03 (s, 1H), 9.23 (d, J = 8.5 Hz, 1H), 8.75 (d, J = 4.0 Hz, 1H), 8.682 (d, J = 7.0 Hz, 1H), 8.61 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.84 (m, 2H), 7.39 (m, 1H), 4.18 (t, J = 7.5 Hz, 1H), 1.72 (m, 2H), 1.46 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃) δ 163.76, 162.62, 150.30, 150.16, 137.69, 137.20, 132.18, 131.92, 130.82, 128.75, 127.60, 124.69, 123.29, 123.24, 122.61, 119.46, 118.86, 110.09, 40.53, 30.26, 20.48, 13.96, 0.12. HRMS (ESI): [M + H]⁺ calcd for C₂₃H₁₈BrN₅O₂: 476.0722; found 476.0715. The theoretical DFT calculations of compounds **4a-4c**

Fig. S1 the theoretical DFT calculations of compounds $4a\mathchar`4a$

NMR and HRMS spectra of compound 4a-c

Fig. S5 ¹H-NMR (500MHz, CDCl₃) spectra of compound 4a-Z.

Fig. S8 ¹H-NMR (500MHz, CDCl₃) spectra of compound 4b-*E*.

Fig. S10 HRMS-ESI mass spectra of compound 4b-E.

Fig. S13 HRMS-ESI mass spectra of compound 4c-Z.

Solvent effect of probe 4a-E

Fig. S14. Normalized absorbance and emission responses with the solvent effect: (a) UV-visible

responses of **4a**-*E* (20 μ M) in various solvents (Hexane, Ether, Dichloromethane, Tetrahydrofuran, Methanol, Ethanol, Acetonitrile, Acetone, Dimethyl Sulfoxide). (b) The system (a) + CN⁻ (2.0 equiv.). (c) Fluorescence emission of **4a**-*E* (20 μ M) in various solvents (Hexane, Ether, Dichloromethane, Tetrahydrofuran, Methanol, Ethanol, Acetonitrile, Acetone, Dimethyl Sulfoxide). (d) The system (c) + CN⁻ (2.0 equiv.).

Interference experiments and titration spectra of the control probes

Fig. S15 (a) Interference experiments of **4a**-*E* (20 μ M) in THF/water mixtures with 50% of water fractions for CN⁻ in the presence of other anions. The red bars represent the absorbance at 594 nm of **4a**-*E* in the presence of 30 equiv. of the anion of interest (from left to right: CN⁻, F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, AcO⁻, HSO₄⁻, BF₄⁻, ClO₄⁻, H₂PO₄⁻, S⁻, SCN⁻). The gray bars indicate the change that occurs upon subsequent addition of 30 equiv. of CN⁻ to the solution containing **4a**-*E* and the anion of interest. (b) UV-visible titration spectra of **4a**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of CN⁻. (c) UV-visible titration spectra of **4b**-*E* (20 μ M) with TBACN (0 to 1.2 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of **4c**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of **4c**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of **4c**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of **4c**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of **4c**-*Z* (20 μ M) with TBACN (0 to 1.0 equiv.) in THF solution. The inset shows the absorbance at 610 nm as a function of CN⁻.

Job plot diagram

Fig. S16 Job plot diagram for binding interaction between probe 4a-E and TBACN in THF.

Influence of pH on the absorbance of the probe 4a

Fig. S17 (a) Influence of pH on the absorbance at 595 nm of **4a**-*E* (20 μ M) and **4a**-*E*+CN⁻ in CH₃CN/H₂O (9:1, v/v). (b) Influence of pH on the absorbance at 603 nm of **4a**-*Z* (20 μ M) and **4a**-*Z*+CN⁻ in CH₃CN/H₂O (9:1, v/v).

pKa of NH group

Fig. S18 Non-linear fitting curve of probe **4a**-*E* with TBACN by Boltzmann equation and the pKa of the proton in the NH group is 12.10.

Emission response of 4a and control probe 4b-E

Fig. S19 (a) Interference experiments of **4a**-*E* (20 μ M) in THF/water mixtures with 50% of water fractions for CN⁻ in the presence of other anions. The red bars represent the emission intensity at 661 nm of **4a**-*E* in the presence of 30 equiv. of the anion of interest (from left to right: CN⁻, F⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, AcO⁻, HSO₄⁻, BF₄⁻, ClO₄⁻, H₂PO₄⁻, S⁻, SCN⁻). The gray bars indicate the change that occurs upon subsequent addition of 30 equiv. of CN⁻ to the solution containing **4a**-*E* and the anion of interest. (b) Emission titration spectra of **4a**-*Z* (20 μ M) with TBACN (0 to 1.2 equiv.) in THF. The inset shows the emission at 651 nm as a function of CN⁻. (c) Emission titration spectra of **4b**-*E* (20 μ M) with TBACN (0 to 1.8 equiv.) in THF. The inset shows the emission at 427 nm and 677 nm as a function of CN⁻. (d) Emission titration spectra of **4a**-*E* (20 μ M) with TBACN (0 to 1.5 equiv.) in THF. The inset shows the emission at 652 nm as a function of CN⁻.

Solid state fluorescence

Fig. S20 Solid state fluorescence of the four compounds 4a-E, 4a-Z, 4b-E and 4c-Z.

Reversibility and reusability in solution

Fig. S21 (a) Emission titration spectra of **4a**-*E* (20 μ M) with TBACN (0 to 1.4 equiv.) in THF. The inset shows the emission intensity at 650 nm as a function of CN⁻. (b) Emission titration spectra of **4a**-*E*+CN⁻ (20 μ M) with TFA (0 to 1.0 equiv.) in THF. The inset shows the emission intensity at 650 nm as a function of TFA. (c) Relative fluorescence emission during the titration of **4a**-*E* with CN⁻ and H⁺ (TFA) in THF. (d) Visual fluorescence colour after each sequential addition of CN⁻ and H⁺ (TFA) in THF.

Colorimetric assays in the paper test strip

Fig. S22 Photographs of test strips of **4a**-*E*. (a) The naked eye photo of absorbance of **4a**-*E* treated with CN^- of different concentrations (from 0 to 8.0 mM) (b) The fluorescence emission photo under UV light (365 nm) of **4a**-*E* treated with CN^- of different concentrations (from 0 to 8.0 mM). (c - d) Demonstration of **4a**-*E* as a writable platform: the white strips coated with **4a**-*E* (soaked in 1 mM THF solution) to give the sensor-loaded trips, then writing word "SIT" with a small Chinese brush stained with the TBACN (5.0 mM) solution. Blue word "SIT" in a naked eye photo (d) and red word "SIT" under UV light (365 nm).

¹H-NMR titration spectra of probe **4a**-*E* and control probes

(a) ¹H-NMR titration spectra of probe 4a-E

Fig. S23 (a) ¹H-NMR titration spectra of probe **4a**-*E* (2.0 x 10 ⁻² mol/L) in CDCl₃ upon addition of CN⁻ ions (as alts in CDCl₃) at 298 K. From the bottom to top: **4a**-*E* only, 0.2, 0.4, 0.6, 1.0, 1.5, 2.0,

2.5, 3.5 equiv. (b) ¹H-NMR titration spectra of probe **4b**-*E* (2.0 x 10 ⁻² mol/L) in CDCl₃ upon addition of CN⁻ ions (as alts in CDCl₃) at 298 K. From the bottom to top: **4b**-*E* only, 0.2, 0.4, 0.6, 1.0, 1.5, 2.0, 2.5 equiv.(c) ¹H-NMR titration spectra of probe **4a**-*Z* ($2.0x10^{-2}$ mol/L) in CDCl₃ upon addition of CN⁻ ions (as alts in CDCl₃) at 298 K. From the bottom to top: **4a**-*Z* only, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5 equiv. (d) ¹H-NMR titration spectra of probe **4c**-*Z* ($2.0x10^{-2}$ mol/L) in CDCl₃ upon addition of CN⁻ ions (as alts in CDCl₃) at 298 K. From the bottom to top: **4a**-*Z* only, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5 equiv. (d) ¹H-NMR titration spectra of probe **4c**-*Z* ($2.0x10^{-2}$ mol/L) in CDCl₃ upon addition of CN⁻ ions (as alts in CDCl₃) at 298 K. From the bottom to top: **4c**-*Z* only, 0.2, 0.5, 0.6, 1.0, 1.5, 2.0, 2.5, 3.5 equiv.

¹H-NMR spectra time-dependent response

Fig. S24 Time-dependent ¹H-NMR spectra of probe **4a-Z** and **4c-Z** ($2.0 \times 10^{-2} \text{ mol/L}$) in CDCl₃ at 298 K. From the bottom to top: 0 day to 30 days.

Solvent effect and pertinent photophysical data

Fig. S25 (a) Normalized emission responses of **4a**-*E* (20 μ M) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO). (b) Normalized emission responses of **4a**-*E* (20 μ M) with TBACN (2.0 equiv.) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO). (λ_{ex} : 378 nm)

Fig. S26 Normalized emission spectra of 4a-E (20 μ M) in Hexane: (a) probe (b) probe+CN⁻

Fig. S27 Normalized emission spectra of 4a-E (20 μ M) in Ether: (a) probe (b) probe+CN⁻

Fig. S29 Normalized emission spectra of 4a-E (20 μ M) in THF: (a) probe (b) probe+CN⁻

Fig. S30 Normalized emission spectra of 4a-E (20 μ M) in Methanol: (a) probe (b) probe+CN⁻

Fig. S31 Normalized emission spectra of 4a-E (20 μ M) in Eethanol: (a) probe (b) probe+CN⁻

Fig. S32 Normalized emission spectra of 4a-E (20 μ M) in Acetonitrile: (a) probe (b) probe+CN⁻

Fig. S35 (a) Normalized emission responses of **4a**-*Z* (20 μ M) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO). (b) Normalized emission responses of **4a**-*Z* (20 μ M) with TBACN (2.0 equiv.) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO)

Fig. S36 Normalized emission spectra of 4a-Z (20 μ M) in Hexane: (a) probe (b) probe+CN⁻

Fig. S37 Normalized emission spectra of 4a-Z (20 μ M) in Ether: (a) probe (b) probe+CN⁻

Fig. S38 Normalized emission spectra of 4a-Z (20 μ M) in DCM: (a) probe (b) probe+CN⁻

Fig. S39 Normalized emission spectra of 4a-Z (20 μ M) in THF: (a) probe (b) probe+CN⁻

Fig. S40 Normalized emission spectra of 4a-Z (20 μ M) in Methanol: (a) probe (b) probe+CN⁻

Fig. S41 Normalized emission spectra of 4a-Z (20 μ M) in Eethanol: (a) probe (b) probe+CN⁻

Fig. S42 Normalized emission spectra of $4a-Z (20 \mu M)$ in Acetonitrile: (a) probe (b) probe+CN⁻

Fig. S43 Normalized emission spectra of 4a-Z (20 µM) in Acetone: (a) probe (b) probe+CN-

Fig. S44 Normalized emission spectra of 4a-Z (20 μ M) in DMSO: (a) probe (b) probe+CN⁻

Fig. S45 (a) Normalized emission responses of **4b**-*E* (20 μ M) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO). (b) Normalized emission responses of **4b**-*E* (20 μ M) with TBACN (2.0 equiv.) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO).

Fig. S47 Normalized emission spectra of 4b-E (20 μ M) in Ether: (a) probe (b) probe+CN⁻

Fig. S48 Normalized emission spectra of 4b-E (20 μ M) in DCM: (a) probe (b) probe+CN⁻

Fig. S49 Normalized emission spectra of 4b-E (20 μ M) in THF: (a) probe (b) probe+CN⁻

Fig. S50 Normalized emission spectra of 4b-E (20 μ M) in Methanol: (a) probe (b) probe+CN-

Fig. S51 Normalized emission spectra of 4b-E (20 μ M) in Eethanol: (a) probe (b) probe+CN⁻

Fig. S52 Normalized emission spectra of 4b-E (20 μ M) in Acetonitrile: (a) probe (b) probe+CN⁻

Fig. S53 Normalized emission spectra of 4b-E (20 µM) in Acetone: (a) probe (b) probe+CN⁻

Fig. S55 (a) Normalized emission responses of 4c-Z (20 μ M) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO). (b) Normalized emission

responses of 4c-Z (20 μ M) with TBACN (2.0 equiv.) in various solvents (Hexane, Ether, DCM, THF, Methanol, Ethanol, Acetonitrile, Acetone, DMSO).

Fig. S56 Normalized emission spectra of 4c-Z (20 µM) in Hexane: (a) probe (b) probe+CN⁻

Fig. S57 Normalized emission spectra of 4c-Z (20 μ M) in Ether: (a) probe (b) probe+CN⁻

Fig. S60 Normalized emission spectra of 4c-Z (20 μ M) in MeOH: (a) probe (b) probe+CN⁻

Fig. S61 Normalized emission spectra of 4c-Z (20 μ M) in EtOH: (a) probe (b) probe+CN⁻

Fig. S62 Normalized emission spectra of 4c-Z (20 μ M) in Acetonitrile: (a) probe (b) probe+CN⁻

Fig. S63 Normalized emission spectra of 4c-Z (20 μ M) in Acetonitrile: (a) probe (b) probe+CN⁻

Fig. S64 Normalized emission spectra of 4c-Z (20 μ M) in DMSO: (a) probe+CN⁻

Dye	7	A _{abs} /nm		λ_{em}/nm	$\triangle_{ss}^{a/nm}$	Probe	Probe+CN-	solvent
	Probe	Probe+CN-	Probe	Probe+CN-		$\epsilon/M^{-1}cm^{-1}$	$\epsilon/M^{-1}cm^{-1}$	
4a-E	432	593	476	426	225	19400	9365	Hexane
				657				
4a-E	431	595	475	427	218	36335	72035	Ether
				649				
4a-E	438	603	488	436	220	37190	69200	DCM
				658				
4a-E	435	609	479	485	215	30985	58690	THF
	615		643	650		2355		
4a-E	437	589	487	430	222	32415	1490	MeOH
				659				
4a-E	437	596	488	429	223	33855	3625	EtOH
			658	660				
4a-E	435	595	489	430	217	35355	61370	MeCN
	596		645	652		1495		
4a-E	435	604	479	430	216	36510	67365	Acetone
			640	651				
4a-E	441	606	469	438	216	28275	67235	DMSO
	606		653	657		10780		
4a-Z	415	592	498	426	249	16095	5150	Hexane
				664				
4a-Z	418	594	462	427	231	34780	68240	Ether
	598			649		1705		
4a-Z	425	604	473	659	234	34585	76055	DCM
4a-Z	425	609	470	651	226	31505	78825	THF
			642					
4a-Z	427	432	529	469	234	34095	32130/89	MeOH
		587	654	661			30	
4a-Z	436	435	504	663	227	33850	34400/95	EtOH

Table S1: optical data of **4a-c** measured at room temperature

	595	598	658			2135	30	
4a-Z	422	596	469	429	230	31915	66575	MeCN
	596		648	652		7300		
4a-Z	422	604	470	651	229	30195	81955	Acetone
	606		645			1795		
4a-Z	434	606	653	438	224	22850	72700	DMSO
	607			658				
4b-E	440	623	470	427	230	28850	6900	Hexane
				670				
4b-E	433	626	488	428	238	30310	46495	Ether
				671				
4b-E	448	632	493	435	231	33095	27960	DCM
				679				
4b-E	444	641	492	431	234	30290	44895	THF
				678				
4b-E	444	446	495	490	44	33970	32265	МеОН
		606					780	
4b-E	444	443	499	434	221	49495	26475	EtOH
		635		665			2675	
4b-E	442	624	489	434	231	29380	22910	MeCN
	619			673		855		
4b-E	441	634	491	430	233	32170	36510	Acetone
				674				
4b-E	447	633	497	438	228	25230	42455	DMSO
	635		663	675				
4c-Z	414	586	468	429	255	22415	8895	Hexane
				669				
4c-Z	413	591	473	430	248	18505	61245	Ether
				661				
4c-Z	424	601	476	437	247	20475	38795	DCM
				671				
4c-Z	416	609	528	430	249	15120	36685	THF
			742	665				
4c-Z	416	586	515	437	247	14825	9630	MeOH
				663				
4c-Z	418	596	508	434	252	17705	29705	EtOH
	601			670		1725		
4c-Z	420	591	507	430	244	16385	37520	MeCN
	594			664		2310		
4c-Z	418	600	506	431	243	18635	43835	Acetone
	601			661		2830		
4c-Z	405	604	437	438	259	7095	38615	DMSO
	604		661	664		29465		

[a] Stokes' shift.

Optical data of **4a-c** in various solvents (Hexane, Ether, Dichloromethane, Tetrahydrofuran, Methanol, Ethanol, Acetonitrile, Acetone, Dimethyl sulfoxide).

Samples	Spiked (µM)	Found (µM)	Recovery (%)	SD (%), n>5
	80	97.81	122.26	4.25
Tap water	150	120.97	80.64	3.36
	300	259.23	86.41	6.25
Drinking water	35	33.92	86.41	0.42
	80	73.15	91.44	4.15
	150	129.89	86.6	5.93
River water	80	39.34	49.18	6.99
	150	63.94	42.63	1.27
	300	196.08	65.36	15.98
Mineral water	60	40.07	66.78	3.113
	150	50.76	33.84	6.548
	300	108.28	36.09	10.45

Table S2: Recovery data for CN⁻ detection in spiked water samples

Recovery data of probe 4a-E for CN⁻ detection in spiked water samples (Tap water, Drinking water, River water and Mineral water).

Fig. S65 Error bars for cyanides detection in real-world water samples.

NMR spectra of intermediate compounds

Fig. S67 ¹³C-NMR (125 MHz, CDCl₃) spectra of compound 10

