Supplementary materials

Photoelectrochemical immunosensor based on CdS/CdTe cosensitized SnO₂ as platform for ultrasensitive detection of amyloid β-protein

Nuo Zhang, Yaoguang Wang^{*}, Guanhui Zhao, Chao Wang, Yueyuan Li, Yong Zhang, Huan Wang, Qin Wei^{*}

Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China

*Corresponding authors. Tel. +86 531 82767872; fax: +86 531 82767367. E-mail address: wangyaoguang9002@163.com; sdjndxwq@163.com.

Figure S1. SEM image of CdTe (A) and CdS (B).

Figure S2. UV-vis absorption spectra of CdTe and CdS (A) and UV-vis diffuse reflectance spectra of SnO₂, SnO₂/CdTe and SnO₂/CdS/CdTe.

Figure S3. Fluorescence emission spectrum of CdTe and CdS.

Figure S4. Photocurrent responses of ITO/SnO₂ (a), ITO/SnO₂/CdTe (b), ITO/SnO₂/CdS (c) and ITO/SnO₂/CdS/CdTe (d) electrodes.

Figure S5. The effect of working current intensity on the photocurrent response of the immunosensor.

	Linear range	Detection limit	References	
Detection method	Ellieur runge			
	(pg·mL ^{−1})	(pg·mL ^{−1})		
Electrochemiluminescence			1	
immunosensor	$0.1 - 5.0 \times 10^4$	0.054		
Electrochemiluminescence			2	
immunosensor	$0.05 - 1.0 \times 10^4$	0.021		
Electrochemical	$10 - 1.0 \times 10^3$	5.2	3	
immunosensor			-	
Electrochemical	88 - 4 4 $\times 10^{5}$	35	4	
immunosensor	00 1.1 10	55		
Fluorescence detection	0.0	5.5 104	5	
method	$8.8 \times 10^{4} - 4.4 \times 10^{7}$	5.5 × 10+		
Electrochemical impedance	$1.0 - 1.0 \times 10^4$	1.0	6	
spectroscopy analysis	1.0 1.0 10	1.0		
Photoelectrochemical	$0.50 1.0 \times 10^4$	0.18	This work	
immunosensor	0.30 - 1.0 ^ 10	0.10		

Table S1. Comparison of the performance of the proposed label-free PEC immunosensor for Aβ detection with other reports

Tuble 52. The results of the Ap determination in number sumples										
Content in	Added content (ng·mL ⁻¹)	Found (ng·mL ⁻¹)*		RSD (n=3, %)		Recovery (%)				
samples		Our	ELISA	Our	ELISA	Our	ELIS			
(ng·mL ⁻¹)		method		method		method	Α			
0.10	0.10	0.212	0.204	8.2	7.4	106.5	101.8			
	0.20	0.296	0.314	7.2	7.1	98.7	104.6			
0.30	0.10	0.409	0.405	6.0	4.6	102.2	101.2			
	0.20	0.502	0.510	3.6	3.2	100.5	102.1			

Table S2. The results of the $A\beta$ determination in human serum samples

*The average value of three successive measurements.

References:

- J. Xue, L. Yang, H. Wang, T. Yan, D. Fan, R. Feng, B. Du, Q. Wei and H. Ju, Biosens. Bioelectron., 2019, 133, 192-198.
- X. Li, D. Wu, H. Ma, H. Wang, Y. Wang, D. Fan, B. Du, Q. Wei and N. Zhang, Biosens. Bioelectron., 2019, 131, 136-142.
- P. Carneiro, J. Loureiro, C. Delerue-Matos, S. Morais and M. d. C. Pereira, Sensor. Actuat. B-Chem., 2017, 239, 157-165.
- N. Xia, X. Wang, B. Zhou, Y. Wu, W. Mao and L. Liu, ACS Appl. Mater. Inter., 2016, 8, 19303-19311.
- L. Liu, Y. Chang, J. Yu, M. Jiang and N. Xia, Sensor. Actuat. B-Chem., 2017, 251, 359-365.
- C.-C. Wu, B.-C. Ku, C.-H. Ko, C.-C. Chiu, G.-J. Wang, Y.-H. Yang and S.-J. Wu, *Electrochim. Acta*, 2014, **134**, 249-257.