Electronic Supplementary Information

Label-free fluorescence DNA walker for protein analysis based on

terminal protection and dual-enzyme-assisted cleavage induced G-

quadruplex/berberine conformation

Shue Deng,[†] Baolong Zhou,[†] Wenjing Li, Hui Li, Fenglian Zhang, Jingjing Ming^{*} College of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.

Contents

1. Tables

Table S1 Sequence of the DNA

Table S2 Comparison of detection limit for STA based on different methods

Table S3 Determination of stability using the proposed sensor

Table S4 Determination of reproducibility using the proposed sensor

Table S5 Determination of streptavidin in the diluted fetal calf serum sample using the proposed sensor

2. Figures

Fig. S1 (A) TEM images of 13 nm AuNPs. Scale bars: 50 nm. (B) UV-vis spectra of AuNPs and Au+DNA

Fig. S2 The effect of (A) molar ratio of report probe to swing arm probe, (B) reaction time between STA and biotin modified DNA report probe, (C) Exo I concentration and (D) Exo I reaction time

Fig. S3 The effect of (A) Pb²⁺ concentration, (B) K⁺ concentration, (C) berberine and (D) the incubation time between G-quadruplex and berberine on the fluorescence response of the sensing system

[†] These authors contributed equally.

^{*}Corresponding authors. Tel.: +86 536 8462539; fax: +86 536 8462539. *E-mail address*: mingjj@wfmc.edu.cn (J. Ming).

Table S1. Sequence of the DNA

note	sequence
Swing arm probe:	
5'-SH-TTTTTTTTTTTTTTTTTTTTTT	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
CTCTTCTCCGAGCCGGTCGAAAT	AGTTGGTTTTTTTTTTTTTTT-biotion-3';
Report probe:	

5'-TTAGGGTTAGGGTTAGGGTTAGGGTTTACCAACTATrAGGAAGAGAT GTTTTTT-SH-3'

Technique	Output signal	Detection	Ref.
		limit	
Polymerase-powered DNA	Electrochemistry	16 pM	1
walker			
Steric hindrance hybridization	Electrochemistry	0.01 pM	2
based on CdSe quantum dots			
Biotin-streptavidin recognition	Localized surface	5 nM	3
and metallic labels	plasmon resonance		
Target-protecting dumbbell	Fluorescence	12.7 pM	4
molecular probe			
Microfluidic biosensor	Fluorescence	1 pM	5
Terminal protection and dual-	Fluorescence	20 pM	This
enzyme-assisted DNA walker			work

Table 52. Comparison of detection mint for 5171 based on unreferit methods	Table S2.	Comp	arison	of d	letection	limit	for	STA	based	on	different	method	S
---	-----------	------	--------	------	-----------	-------	-----	-----	-------	----	-----------	--------	---

Sample	Added	Time	FL signal	Found (nM)	RSD (%)
number	(nM)				
1	0.5	1 h	110.94±6.72	0.478 ± 0.043	9.08
		2 h	112.45±5.82	0.487 ± 0.038	7.71
		5 h	111.42±4.73	0.481 ± 0.031	6.35
		8 h	106.58±6.73	0.449 ± 0.043	9.67
		RSD (%)	2.35	3.53	
2	1	1 h	186.77±11.07	0.967 ± 0.071	7.39
		2 h	187.48±8.97	0.971 ± 0.058	5.96
		5 h	189.81±7.54	0.986 ± 0.049	4.93
		8 h	180.50 ± 10.04	0.926 ± 0.070	6.99
		RSD (%)	2.14	2.67	

 Table S3. Determination of stability using the proposed sensor.

	Added (nM)	C).2	C).8
	Sample	FL signal	Found (nM)	FL signal	Found (nM)
A	1	75.22	0.247	164.64	0.824
	2	73.03	0.233	158.23	0.783
	3	69.09	0.208	169.18	0.853
	Average	72.44	0.229	164.02	0.820
	SD	3.10	0.020	5.50	0.035
	RSD (%)	4.29	8.74	3.35	4.33
В	1	77.31	0.261	157.44	0.778
	2	76.23	0.254	155.81	0.767
	3	72.88	0.232	160.12	0.795
	Average	75.47	0.249	157.79	0.780
	SD	2.31	0.015	2.18	0.014
	RSD (%)	3.06	5.99	1.38	1.80
С	1	66.73	0.198	170.33	0.861
	2	64.21	0.176	158.92	0.787
	3	69.82	0.212	154.15	0.756
	Average	66.92	0.194	161.13	0.801
	SD	2.81	1.81	8.31	0.054
	RSD (%)	4.20	9.37	5.16	6.69
	Average	72.58	0.230	158.65	0.785
	SD	2.83	0.018	4.99	0.032
	RSD (%)	3.90	7.93	3.14	4.10

 Table S4. Determination of reproducibility using the proposed sensor.

Sample number	Added (nM)	Found (nM)	Recovery (%)
1	0.1	0.095±0.040	95.0
2	0.5	0.437±0.039	87.4
3	0.8	0.757±0.039	94.6

 Table S5. Determination of streptavidin in the diluted fetal calf serum sample using the proposed sensor.

Fig. S1 (A) TEM images of 13 nm AuNPs. Scale bars: 50 nm. (B) UV-vis spectra of AuNPs and Au+DNA.

Fig. S2 (A) The effect of molar ratio of report probe to swing arm probe on the fluorescene response of sensing system in the absence (red bar) and presence (green bar) of 1 nM STA. The concentrations of Exo I, Pb²⁺, K⁺ and berberine were fixed at 40 units, 50 μ M, 100 mM and 8 μ M, respectively. F and F₀ are the florescence intensity of the sensor in the presence and absence of STA. (B) Optimization of the reaction time between STA and biotin modified DNA report probe in the absence (red line) and presence (black line) of 1 nM of STA. (C) Optimization of Exo I concentration without addition of STA. The reaction time of Exo I was 30 min. (D) Optimization of Exo I reaction time without addition of STA. The concentration of Exo I was 40 units.

Fig. S3 The effect of (A) Pb²⁺ concentration, (B) K⁺ concentration, (C) berberine and (D) the incubation time between G-quadruplex and berberine on the fluorescence response of the sensing system.

References:

 Z. Chen, C. Wang, L. Hao, R. Gao, F. Li and S. Liu, *Biosens. Bioelectron.*, 2019, 128, 104-112.

 Y. Wei, X. Liu, C. Mao, H. Niu, J. Song and B. Jin, *Biosens. Bioelectron.*, 2018, 103, 99-103.

3. M. Focsan, A. Campu, A. M. Craciun, M. Potara, C. Leordean, D. Maniu and S. Astilean, *Biosens. Bioelectron.*, 2016, **86**, 728-735.

- 4. J. Chen, Y. Liu, X. Ji and Z. He, Biosens. Bioelectron., 2016, 83, 221-228.
- 5. J. Wang, M. Aki, D. Onoshima, K. Arinaga, N. Kaji, M. Tokeshi, S. Fujita, N. Yokoyama and Y. Baba, *Biosens. Bioelectron.*, 2014, **51**, 280-285.