Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

A simple hypochlorous acid signaling probe based on resorufin carbonodithioate and its biological application

Myung Gil Choi, Yu Jeong Lee, Kang Min Lee, Kyoung Yeol Park, Tae Jung Park* and Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

Contents

Table S1.	Comparison of representative HOCl-selective optical signaling probes
Fig. S1.	Changes in fluorescence intensity of RT-1 at 587 nm (I/I_0) in the presence of
	(a) common metal ions and (b) anions.
Fig. S2.	UV-vis spectra of RT-1 in the presence and absence of HOCl.
Fig. S3.	Competitive signaling of HOCl by RT-1 in the presence of common anions as
	a background.
Fig. S4.	Effect of pH on HOCl signaling by RT-1 .
Fig. S5 .	Partial ¹³ C NMR spectra of RT-1 , RT-1 + HOCl, and resorufin sodium salt.
Fig. S6.	EI (direct injection probe) mass spectrum of the HOCl signaling product of
	RT-1.
Fig. S7.	Mulliken charge distribution of RT-1 and RT-2 .
Fig. S8 .	MTT assay of RT-1 in HeLa cells.
Fig. S9 .	Confocal microscopy images of HeLa cells stained with 3.0 μ M of RT-1 in the
	presence (40 μ M, 80 μ M) and absence of HOCl.
Fig. S10.	¹ H NMR spectrum of RT-1 in DMSO- d_6 (600 MHz).
Fig. S11.	¹³ C NMR spectrum of RT-1 in DMSO- d_6 (150 MHz).
Fig. S12.	High resolution FAB mass spectrum of RT-1 .
Fig. S13.	¹ H NMR spectrum of RT-2 in DMSO- d_6 (600 MHz).
Fig. S14.	¹³ C NMR spectrum of RT-2 in DMSO- d_6 (150 MHz).
Fig. S15.	High resolution FAB mass spectrum of RT-2 .

Table S1. Compar	rison of representative	HOCl-selective	optical signaling probes
I wore or compa	insom of representative		option signating proces

Structure	Signaling	Sensing mechanism	Condition	Limit of detection	Application	Reference
Protection of the second secon	Colorimetry, Fluorescence	Oxidative hydrolysis of hydroxamic acid	PBS buffer-DMF (0.1%) at pH 7.4	< 25 nM	Visualization of HOCl in A549 cells and zebrafish	[1]
$\begin{array}{ c c c } & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	Colorimetry, Fluorescence	Oxidative hydrolysis of sulfonhydrazone	PBS buffer (pH 7.4, 10 mM) and EtOH (1 : 1, v/v)	7.5 nM	Visualization of HOCl in HeLa and RAW 264.7 cells	[2]
	Colorimetry, Fluorescence	Oxidative hydrolysis of hydrazone	PBS buffer (pH 7.4)	7.5 nM	Visualization of HOCl in RAW 264.7 cells	[3]
ун	Colorimetry, Fluorescence	Formation of isoxazoline	PBS buffer (pH 7.4)	163 nM	Visualization of HOCl in C6 glial and BV2 cells	[4]
OH	Colorimetry, Fluorescence	Oxidative hydrolysis of boronic acid	NaH ₂ PO ₄ -Na ₂ HPO ₄ buffer (pH 7.4)	63 nM	Determination of HOCl using probe coated test paper	[5]
→ H → H → H → H → H → H → H →	Fluorescence	Desulfurization of thiolactam	KH ₂ PO ₄ buffer (pH 5.5) containing 1% CH ₃ CN	-	Visualization of HOCl in human polymorphonuclear neutrophils and intestinal epithelia of Drosophila	[6]

Table S1.	Compariso	n of represe	entative H	HOC1-se	elective a	signaling	probes (<i>(continue)</i>
						- 0 - 0		(

Structure	Signaling	Sensing mechanism	Condition	Limit of detection	Application	Reference
Et ₂ N O O NEt ₂	Colorimetry, Fluorescence	Desulfurization of thiolactam	PBS buffer (20 mM, pH 7.4) with 30% CH ₃ CN	40 nM	Determination of HOCl in tap water and visualization of HeLa cells	[7]
N S S O	Fluorescence	Oxidative hydrolysis of oxathiolane	PBS/EtOH (1:1, pH 7.4)	16.6 nM	Visualization of HOCl in mitochondria of HeLa cells	[8]
N O O	Fluorescence	Oxidative hydrolysis of thiocarbamate	PBS buffer (pH 7.4)	2.37 nM	Visualization of HOCl in HeLa, 4T1, and RAW 264.7 cells	[9]
	Fluorescence	Oxidative hydrolysis of thiocarbamate	PBS pH 7.4, containing 1% DMSO	0.16 nM	Visualization of HOCl in HeLa cells	[10]
H-B-H H	Fluorescence	Oxidative hydrolysis of <i>N</i> -heterocyclic carbene borane	PBS (pH 7.4)	-	Visualization of HOCl in RAW 264.7 cells and hippocampal slice	[11]
s of other	Colorimetry, Fluorescence	Oxidative hydrolysis of carbonodithioate	Phosphate buffer (pH 7.4) containing 1% CH ₃ CN	2.1 nM	Visualization of HOCl in RAW 264.7 and HeLa cells	This work

Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2019

(a)

(b)

Fig. S1. Changes in fluorescence intensity of **RT-1** at 587 nm (I/I_0) in the presence of (a) common metal ions and (b) anions. [**RT-1**] = 5.0×10^{-6} M, [HOC1] = 2.5×10^{-5} M, [M^{n+}] = $[A^{n-}] = 5.0 \times 10^{-5}$ M in phosphate buffer solution (pH 7.4) containing 1% (v/v) acetonitrile, $\lambda_{ex} = 550$ nm.

Fig. S2. UV–vis spectra of **RT-1** in the presence and absence of HOCl. [**RT-1**] = 5.0×10^{-6} M, [HOCl] = 5.0×10^{-5} M in phosphate buffer solution (pH 7.4) containing 1% (v/v) acetonitrile.

Fig. S3. Competitive signaling of HOCl by **RT-1** in the presence of common anions as a background. [**RT-1**] = 5.0×10^{-6} M, [HOCl] = 2.5×10^{-5} M, [Aⁿ⁻] = 5.0×10^{-5} M in phosphate buffer solution (pH 7.4) containing 1% (ν/ν) acetonitrile, $\lambda_{ex} = 550$ nm.

Fig. S4. Effect of pH on HOCl signaling by **RT-1**. [**RT-1**] = 5.0×10^{-6} M, [HOCl] = 2.5×10^{-5} M in phosphate buffer solution containing 1% (ν/ν) acetonitrile, $\lambda_{ex} = 550$ nm.

Fig. S5. Partial ¹³C NMR spectra of **RT-1**, **RT-1** + HOCl, and resorufin sodium salt. [**RT-1**] = [resorufin sodium salt] = 1.0×10^{-2} M in DMSO- d_6 . Middle NMR spectrum (**RT-1** + HOCl) was obtained after purification of the reaction product of **RT-1** and HOCl (1.1 eq) using a short silica column.

Fig. S6. EI (direct injection probe) mass spectrum of the HOCl signaling product of RT-1.

Fig. S7. Mulliken charge distribution of RT-1 and RT-2.

Fig. S8. MTT assay of **RT-1** in HeLa cells. [**RT-1** $] = 0-5.0 \times 10^{-5}$ M.

Fig. S9. Confocal microscopy images of HeLa cells stained with 3.0 μ M of **RT-1** in the presence (40 μ M, 80 μ M) and absence of HOCl.

Fig. S10. ¹H NMR spectrum of **RT-1** in DMSO- d_6 (600 MHz).

Fig. S11. ¹³C NMR spectrum of RT-1 in DMSO- d_6 (150 MHz).

Fig. S12. High-resolution FAB mass spectrum of RT-1.

Fig. S13. ¹H NMR spectrum of RT-2 in DMSO- d_6 (600 MHz).

Fig. S14. ¹³C NMR spectrum of RT-2 in DMSO- d_6 (150 MHz).

Fig. S15. High-resolution FAB mass spectrum of RT-2.

References:

- [1] Y. K. Yang, H. J. Cho, J. Lee, I. Shin and J. Tae, Org. Lett., 2009, 11, 859–861.
- [2] L. Qiao, H. Nie, Y. Wu, F. Xin, C. Gao, J. Jing and X. Zhang, *J. Mater. Chem. B*, 2017, 5, 525–530.
- [3] B. Wang, D. Chen, S. Kambam, F. Wang, Y. Wang, W. Zhang, J. Yin, H. Chen and X. Chen, *Dyes Pigment.*, 2015, 120, 22–29.
- [4] S. I. Reja, V. Bhalla, A. Sharma, G. Kaur and M. Kumar, *Chem. Commun.*, 2014, 50, 11911–11914.
- [5] Q. Wang, C. Liu, J. Chang, Y. Lu, S. He, L. Zhao and X. Zeng, *Dyes Pigment.*, 2013, 99, 733–739.
- [6] X. Chen, K.-A. Lee, E.-M. Ha, K. M. Lee, Y. Y. Seo, H. K. Choi, H. N. Kim, M. J. Kim,
 C.-S. Cho, S. Y. Lee, W.-J. Lee and J. Yoon, *Chem. Commun.*, 2011, 47, 4373–4375.
- [7] S. Ding, Q. Zhang, S. Xue and G. Feng, *Analyst*, 2015, **140**, 4687–4693.
- [8] L. Yuan, L. Wang, B. K. Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. Peng, Q.-H. Xu and Y.-T. Chang, *J. Am. Chem. Soc.*, 2015, 137, 5930–5938.
- [9] Y. Jiang, G. Zheng, Q. Duan, L. Yang, J. Zhang, H. Zhang, J. He, H. Sun and D. Ho, *Chem. Commun.*, 2018, 54, 7967–7970
- [10] L. Wu, Q. Yang, L. Liu, A. C. Sedgwick, A. J. Cresswell, S. D. Bull, C. Huang and T. D. James, *Chem. Commun.*, 2018, 54, 8522–8525.
- [11] Y. L. Pak, S. J. Park, D. Wu, B. Cheon, H. M. Kim, J. Bouffard and J. Yoon, Angew. Chem. Int. Ed., 2018, 57, 1567–1571.