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Table S1. Comparison of representative HOCl-selective optical signaling probes

Structure Signaling Sensing mechanism Condition
Limit of 

detection
Application Reference

N

O

N
H

O N
H

OH Colorimetry,

Fluorescence

Oxidative hydrolysis 

of hydroxamic acid

PBS buffer-DMF 

(0.1%) at pH 7.4
< 25 nM

Visualization of HOCl in 

A549 cells and zebrafish
[1]

N
B

N
FF

H

N NH
SO

O

Colorimetry, 

Fluorescence

Oxidative hydrolysis 

of sulfonhydrazone

PBS buffer (pH 7.4, 

10 mM) and EtOH (1 

: 1, v/v)

7.5 nM
Visualization of HOCl in 

HeLa and RAW 264.7 cells
[2]

O

O

HO O OH

N
HN N

Colorimetry, 

Fluorescence

Oxidative hydrolysis 

of hydrazone
PBS buffer (pH 7.4) 7.5 nM

Visualization of HOCl in 

RAW 264.7 cells
[3]

N H

N OH

Colorimetry, 

Fluorescence

Formation of 

isoxazoline
PBS buffer (pH 7.4) 163 nM

Visualization of HOCl in C6 

glial and BV2 cells
[4]

N

OH

BF4
-

Colorimetry, 

Fluorescence

Oxidative hydrolysis 

of boronic acid

NaH2PO4-Na2HPO4 

buffer (pH 7.4)
63 nM

Determination of HOCl 

using probe coated test paper
[5]

S

O

N
H

O N
H

Fluorescence
Desulfurization of 

thiolactam

KH2PO4 buffer (pH 

5.5) containing 1% 

CH3CN

-

Visualization of HOCl in 

human polymorphonuclear 

neutrophils and intestinal 

epithelia of Drosophila

[6]
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Table S1. Comparison of representative HOCl-selective signaling probes (continue)

Structure Signaling Sensing mechanism Condition
Limit of 

detection
Application Reference

S

O

Et2N O

NEt2O

Colorimetry, 

Fluorescence

Desulfurization of 

thiolactam

PBS buffer (20 mM, pH 

7.4) with 30% CH3CN
40 nM

Determination of HOCl in 

tap water and visualization 

of HeLa cells

[7]

N
H

OS

Fluorescence
Oxidative hydrolysis 

of oxathiolane

PBS/EtOH (1:1, pH 

7.4)
16.6 nM

Visualization of HOCl in 

mitochondria of HeLa cells
[8]

O

O

N

S Fluorescence
Oxidative hydrolysis 

of thiocarbamate
PBS buffer (pH 7.4) 2.37 nM

Visualization of HOCl in 

HeLa, 4T1, and RAW 

264.7 cells

[9]

N

S

O O

N
S

Fluorescence
Oxidative hydrolysis 

of thiocarbamate

PBS pH 7.4, containing 

1% DMSO
0.16 nM

Visualization of HOCl in 

HeLa cells
[10]

N

B HH
H

Fluorescence

Oxidative hydrolysis 

of N-heterocyclic 

carbene borane

PBS (pH 7.4) -

Visualization of HOCl in 

RAW 264.7 cells and 

hippocampal slice

[11]

O O O

N

S

S
Colorimetry,

Fluorescence

Oxidative hydrolysis 

of carbonodithioate

Phosphate buffer (pH 

7.4) containing 1% 

CH3CN

2.1 nM

Visualization of HOCl in 

RAW 264.7 and HeLa 

cells

This work
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Fig. S1. Changes in fluorescence intensity of RT-1 at 587 nm (I/Io) in the presence of (a) 

common metal ions and (b) anions. [RT-1] = 5.0  10–6 M, [HOCl] = 2.5  10–5 M, [Mn+] = 

[An–] = 5.0  10–5 M in phosphate buffer solution (pH 7.4) containing 1% (v/v) acetonitrile, 

λex = 550 nm.
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Fig. S2. UV–vis spectra of RT-1 in the presence and absence of HOCl. [RT-1] = 5.0  10–6 

M, [HOCl] = 5.0  10–5 M in phosphate buffer solution (pH 7.4) containing 1% (v/v) 

acetonitrile.
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Fig. S3. Competitive signaling of HOCl by RT-1 in the presence of common anions as a 

background. [RT-1] = 5.0  10–6 M, [HOCl] =2.5  10–5 M, [An–] = 5.0  10–5 M in phosphate 

buffer solution (pH 7.4) containing 1% (v/v) acetonitrile, λex = 550 nm.
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Fig. S4. Effect of pH on HOCl signaling by RT-1. [RT-1] = 5.0  10–6 M, [HOCl] = 2.5  

10–5 M in phosphate buffer solution containing 1% (v/v) acetonitrile, λex = 550 nm.

Fig. S5. Partial 13C NMR spectra of RT-1, RT-1 + HOCl, and resorufin sodium salt. [RT-1] 

= [resorufin sodium salt] = 1.0  10–2 M in DMSO-d6. Middle NMR spectrum (RT-1 + HOCl) 

was obtained after purification of the reaction product of RT-1 and HOCl (1.1 eq) using a 

short silica column.
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Fig. S6.  EI (direct injection probe) mass spectrum of the HOCl signaling product of RT-1.

Fig. S7. Mulliken charge distribution of RT-1 and RT-2.
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Fig. S8. MTT assay of RT-1 in HeLa cells. [RT-1] = 0–5.0  10–5 M.

Fig. S9. Confocal microscopy images of HeLa cells stained with 3.0 μM of RT-1 in the 
presence (40 μM, 80 μM) and absence of HOCl.
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Fig. S10. 1H NMR spectrum of RT-1 in DMSO-d6 (600 MHz).

Fig. S11. 13C NMR spectrum of RT-1 in DMSO-d6 (150 MHz).
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Fig. S12. High-resolution FAB mass spectrum of RT-1.

Fig. S13. 1H NMR spectrum of RT-2 in DMSO-d6 (600 MHz).
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Fig. S14. 13C NMR spectrum of RT-2 in DMSO-d6 (150 MHz).

Fig. S15. High-resolution FAB mass spectrum of RT-2.
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