Supporting Information

for

One-pot green and simple synthesis of actinian nickel-doped carbon nanoflowers for ultrasensitive sensing of quercetin

Yuan-Fei Gao,^{a,b} Xing Jin,^b Fen-Ying Kong,^b Zhong-Xia Wang^{*b,c} and Wei Wang^{**b}

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R.

China.

^bSchool of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China.

^cKey Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, P. R. China.

*Corresponding authors (Z.X. Wang; W. Wang) Tel. (Fax): (+86) 515-88298186. E-mail: wangzx198411@163.com; wangw@ycit.edu.cn

Fig. S1 A) FL emission spectra of the Ni-CNFWs at different stabilizer species and volume (λ ex=350 nm). B) Plot of the quenched FL intensity versus methanol volume, the excitation and emission slit widths were 5 nm and 5 nm, respectively.

Fig. S2 FT-IR spectrum of the synthesized Ni-CNFWs.

Fig. S3 FL intensity at 480 nm (excitation at 350 nm) of the Ni-CNFWs as a function of A) solution pH value, B) NaCl concentration, and C) storage time. Both the excitation and emission slit widths were 5 nm.

Fig. S4 A) Plot of the FL signals of the Ni-CNFWs in different pH values of Tris-HNO₃ buffer; B) Plot of the FL signals (FL₀-FL)/FL₀ of the Ni-CNFWs in different pH values of Tris-HNO₃ buffer in the presence of Qut, the concentration of Qut is 300 μ M; λ ex =350 nm and the excitation and emission slit widths were 5 nm and 5 nm, respectively.

Fig. S5 A) Decay of the FL of Ni-CNFWs in the absence and presence of Qut (150 μ M). B) FL lifetimes of Ni-CNFWs in the absence and presence of Qut.

Table S1 Comparison of the methods, materials, linear range and detect limit for quercetin using different technology.

Analyte	Methods	Materials	Linear range	Detect limit	Ref.
Quercetin	Fluorescence	carbon nanoparticles	3.3 - 41.2 μM	0.175 μΜ	1
Quercetin	Fluorescence	SiCDs	0 - 40 μM	0.079 μΜ	2
Quercetin	Fluorescence	CdSe/ZnS quantum dots	1.907 - 600 μM	0.463 µM	3
Quercetin	Electrochemistry	graphene	0.1 - 700 μM	0.06 μΜ	4
Quercetin	Chemiluminescence	Luminol-NaOH- H ₂ O ₂	1.4 - 160 μM	0.93 µM	5
Quercetin	Fluorescence	Ni-doped carbon nanoflowers	0.5 - 300 μM	0.137 μΜ	Our method

References:

- P. L. Zuo, D. L. Xiao, M. M. Gao, J. Peng, R. F. Pan, Y. Xia and H. He, Microchim. Acta, 2014, 181, 1309.
- Y. Zou, F. Y. Yan, T. C. Zheng, D. C. Shi, F. Z. Sun, N. Yang and L. Chen, *Talanta*, 2015, 135, 145.
- W. P. Hu, G. D. Cao, W. Dong, H. B. Shen, X. H. Liu and L. S. Li, *Anal. Methods*, 2014, 6, 1442.
- 4. M. Arvand and M. Anvari, J. Iran. Chem. Soc., 2013, 10, 841.
- H. M. Qiu, C. N. Luo, M. Sun, F. G. Lu, L. L. Fan and X. J. Li, *Food Chem.*, 2012, **134**, 469.