Ultra-sensitive gas phase detection of 2,4,6-Trinitrotoluene by non-covalently functionalized Graphene Field Effect Transistor

Ashwini S. Gajarushi,^a Sandeep G. Surya,^a Mrinalini G. Walawalkar, ^b M. Ravikanth, ^b and V. Ramgopal Rao^{a,c} and Chandramouli Subramaniam^{*b}

- ^{a.} Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
- ^{b.} Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
- ^{c.} Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110 016, India.

Figure S1. Optical image of GFET

Figure S2. Chemical structure of ZnTTPOH.

Figure S3. Vapor generator set-up

Figure S4. TNT concentration generated through vapor generator

Figure S5. CPD plot for GFET and Zn-GFET

Figure S6. XPS spectra of (a) Zn2p peak (b) O1s peak

Figure S7. Drain current vs. gate voltage characteristics for Zn-GFET (curve in blue) after exposure to camphor (curve in red)

Table S1. Limit of detection, response time of various carbon-based and Porphyrin
decorated sensing material

		Technique	Detection		Response
Ref.	Sensing material	/Structure	environment	LOD (Analyte)	time
		Electrical –	Vapour in		
		Transistor	ambient	1.79 μg/cm ² s (TNT	
1	Parylene-C-OFET	based		concentration)	~120 sec
			Vapour phase		
	Carbon		in vacuum		Several
2	nanotubes	SERS	desiccator	(TNT)	hours
			Vapour phase in		
	Silver		sealed		
3	Nanocubes	SERS	container	9 μM (DNT)	3 minutes
	Hydrocarbon		Vapour phase		
	and nitrogen	Electrochemical			
4	oxide(s)	potentiometric		250 ng (TNT, PETN)	
	Hydrocarbon		Vapor phase		
	and nitrogen				
5	oxide(s)	Electrochemical		1-3 μg (TNT, PETN, RDX)	
			Aqueous phase	20 ppb for TNT in	
	Plasma modified			phosphate buffered	
6	Graphene	Electrochemical		saline	
		Fluorescence	Aqueous phase		
7	Porphyrin-MOF	quenching		0.46 μM	30 sec
			Vapor phase in		
			ambient		
	Porphyrin	Electrical –	conditions and		
This	functionalized	Transistor	room		~ 40 sec
work	graphene	based	temperature	4 ppb TNT	

References

- 1. S. G. Surya, S. K. Samji, D. Pasam, P. Ganne, P. Sonar, and V. R. Rao, *IEEE Sens. J.*, 2018, **18**, 1364 1372.
- 2. Y. Sun, K. Liu, J. Miao, Z. Wang, B. Tian, L. Zhang, Q. Li, S. Fan and K. Jiang, *Nano Lett.*, 2010, **10**, 1747-1753.
- 3. S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, C. W. Sol, I. Papakonstantinou and I. P. Parkin, *Nanoscale*, 2017, **9**, 16459-16466.
- 4. P. K. Sekhar, and E. L. Brosha, *IEEE Sens. J.*, 2014, **15**, 1624-1629.
- 5. P. K. Sekhar, E. L. Brosha, R. Mukundan, K. L. Linker, C. Bruuseau, and F. H. Garzon, J. Hazard. Mater., 2011, **190**, 125-132.
- 6. S. A. Trammell, S. C. Hernández, R. L. Myers-Ward, D. Zabetakis, D. A. Stenger, D. K. Gaskill and S. G. Walton, *Sensors*, 2016, **16**, 1281.
- 7. J. Yang, Z. Wang, K. Hu, Y. Li, J. Feng, J. Shi, and J. Gu, ACS Appl. Mater. Interfaces, 2015, **7**, 11956–1196.