Supporting Information

A Simple Enzyme-Free SERS Sensor for Rapid and Sensitive Detection of Hydrogen Peroxide in Food

Yangyang Li^a, Yuqiu Wang^a, Cuicui Fu^{*a,b} Yan Wu^a, Haiyan Cao^a,

Wenbing Shi^a and Young Mee Jung*^b

^a College of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Inorganic Special Functional Materials, Yangtze Normal University, Fuling, Chongqing 408003, China

^b Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 24341, Korea

Corresponding Authors Email: chran16@163.com; Email: ymjung@kangwon.ac.kr

1. Response time of the sensing system

Fig. S1. The relationship between the SERS intensity of 4-mpy at 1096 cm⁻¹ and sensing time.

2. Solution pH

Fig. S2. Response of the SERS sensor to varying pH.

3. Reproducibility of the SERS sensor

Fig. S3. (A) SERS spectra and (B) the intensities at 1097 and 1583 cm⁻¹ from the same sample from 30 randomly selected points from the same sample. (C) SERS spectra and (D) histogram of $\Delta I/I_0$ values obtained from 10 different SERS substrates.

4. Application to milk samples

Fig. S4. SEM images of the Ag NP-assembled substrate before (A) and after (B) immersion in 10 mM H₂O₂ in milk.