Supporting Information

The Amplified Electrochemiluminescence Signals Promoted by AIE-Active Moiety of D-A Type Polymer Dots for Biosensing

Ziyu Wang^{a, †}, Ningning Wang^{b, †}, Hang Gao^a, Yiwu Quan^{c, *}, Huangxian Ju^{b, *} and Yixiang Cheng^{a, *}

^aKey Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

^bState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

^c Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

^{*†*} These authors contributed equally to this work.

*Corresponding author. E-mail: quanyiwu@nju.edu.cn; hxju@nju.edu.cn; yxcheng@nju.edu.cn

TABLE OF CONTENTS

1. Experimental Section	
Materials and Reagents	3
Apparatus	
Synthesis of P-1 , P-2 , P-3 and model polymer	S4
2. Supplementary Figures	
Figure S1-S8	
3. NMR Spectra	S11

1. Experimental section

Materials and Reagents

Tetrahydrofuran (THF) was distilled from sodium in the presence of benzophenone. Poly(styrene-co-maleic anhydride) (PSMA) (average Mn: 1700), tri-n-propylamine (TPrA), H₂O₂, Na₂S₂O₈, K₂C₂O₄, catechol, dopamine and epinephrine were purchased from Sigma-Aldrich Co., Ltd. (Shanghai, China). All other reagents were of analytical grade and used as received. Ultrapure water obtained from a Millipore water purification system (\geq 18 M Ω cm⁻¹, Milli-Q, Millipore) was used in all assays. The ECL measurements were conducted in 0.1 M pH 7.4 PBS containing 0.1 M KNO₃ as the electrolyte.

Apparatus

Morphological studies were carried out with JEM-100S transmission electron microscopy (TEM). UV-*vis* absorption spectra were obtained using a Nanodrop-2000C UV-vis spectrophotometer (Thermo, USA). Fluorescence measurements were conducted on a F-7000 fluorescence spectrometer (Hitachi Co., Japan) equipped with a xenon lamp. Electrochemical experiments were performed on a CHI 660B electrochemical workstation (CH Instruments Inc., USA). ECL experiments were carried out on a MPI-E multifunctional electrochemical and chemiluminescent analytical system (Xi'an Remex Analytical Instrument Co., Ltd., China) with a selfmade electrochemical cell. The ECL spectra were recorded on a CHI 660B electrochemical workstation in conjunction with a Hitachi F-7000 fluorescence spectrometer using luminescence mode under the closed shutter. NMR spectra were obtained from Bruker Avance 400 spectrometer with 400 MHz for ¹H NMR, 100 MHz, 376 MHz for ¹⁹F NMR and reported as parts per million (ppm) from tetramethyl silane (TMS) as internal standard. Molecular weight was determined by gel permeation chromatography (GPC) with a Waters 244 HPLC pump, and THF was used as solvent relative to polystyrene standard.

Synthesis of P-1, P-2, P-3 and mode polymer

	Yield	$M_{\rm w}$	M _n	PDI
P-1	88.2%	13040	8390	1.55
P-2	60.7%	9400	7650	1.23
P-3	54.3%	7670	5570	1.38
Model Polymer	57.0%	7650	6880	1.11

Table S1. Yields and GPC data

Synthesis of **M-3**: To a solution of **7** (1.30 g, 7.38 mmol) in ethyl acetate (15 mL), B₂O₃ (0.25 g, 3.69 mmol) and **8** (2.74 g, 14.78 mmol) was added and stirred under 60°C for 30 min. Then B(OBu-*n*)₃ (3.38 g, 14.78 mmol) in 10 mL was added and stirred under 60°C for another 30 min. After *n*-BuNH₂ (0.21 g, 2.95 mmol) was added, the mixture was refluxed overnight and filtered to give a raw product **9** as a yellow solid. The raw product was solved in 100 mL CH₂Cl₂ without purify and BF₃·Et₂O (1.50 g, 10.54 mmol) was added. After the mixture was refluxed overnight, the solvent was removed and the mixture was purified with silica gel column (CH₂Cl₂ : petroleum ether = 1 : 2, v/v) to give the **M-3** as an orange solid (1.66 g, 40.4%). ¹H NMR (400 MHz, CDCl₃) δ : 8.020 (d, *J* = 15.5 Hz, 2H), 7.565-7.549 (m, 3H), 7.494-7.473 (d, *J* = 8.5 Hz, 4H), 7.321-7.298 (m, 2H), 7.260 (d, *J* = 8.5 Hz, 4H), 6.510 (d, *J* = 15.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 178.42, 146.56, 133.08, 132.45, 131.88, 130.50, 129.37, 129.21, 126.53, 119.81. ¹⁹F NMR (376 MHz, CDCl₃) δ: - 140.15.

Synthesis of model polymer: **M-1** (0.200 g, 0.380 mmol), **M-2** (0.190 g, 0.380 mmol), Pd(PPh₃)₄ (0.050 g, 5% e. q.) and K₂CO₃ (4.56 g, 33.043 mmol) were dissolved in 23 mL toluene and 15 mL water. The reaction was processed through the method of **P-1** and gave model polymer as a brown solid (0.131 g, 57.0%). ¹H NMR (400 MHz, CDCl₃) δ 8.42-8.08 (m, 2H), 7.73-7.61 (m, 2H), 7.54-7.34 (m, 6H), 7.54-7.36 (m, 14H), 4.30-4.27 (m, 2H), 1.86-1.85 (m, 1H), 1.61 (s, 2H), 1.32-1.24 (m, 10H), 0.88-0.82 (m, 2H). GPC data: M_w = 7650, M_n = 6880, PDI = 1.11.

Synthesis of **P-1**: **M-1** (0.120 g, 0.230 mmol), **M-2** (0.100 g, 0.219 mmol), **M-3** (0.007 g, 0.011 mmol) and Pd(PPh₃)₄ (0.028 g, 5% e.q.) were dissolved in 14 mL toluene and 9 mL K₂CO₃ aqueous solution (2 M) was added. The mixture was stirred for 48 h under 75 °C in Ar atmosphere. The reaction mixture was then cooled to room temperature and the organic layer was separated out. After the solvent was removed, the mixture was dissolved in 1 mL CH₂Cl₂, added in 300 mL CH₃OH and stirred for another 30 min. The mixture was filtered and gave **P-1** as a brown solid (0.080 g, 58.0%). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.67 (m, 2H), 7.49-7.39 (m, 6H), 7.25-7.10 (m, 16H), 4.32-4.28 (m, 2H), 1.88-1.87 (m, 1H), 1.33-1.24 (m, 12H), 0.86-0.84 (m, 2H). GPC data: M_w = 13040, M_n = 8390, PDI = 1.55.

Synthesis of P-2: M-1 (0.120 g, 0.230 mmol), M-2 (0.095 g, 0.208 mmol), M-3 (0.014 g, 0.022 mmol) and Pd(PPh₃)₄ (0.028 g, 5% e.q.) were dissolved in 14 mL

toluene and 9 mL K₂CO₃ aqueous solution (2 M) was added. The reaction was processed with the method of **P-1** and gave **P-2** as a brown solid (0.085 g, 60.7%). ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.65 (m, 2H), 7.51-7.41 (m, 7H), 7.22-7.10 (m, 13H), 4.27 (s, 2H), 1.85 (s, 2H), 1.31-1.23 (m, 12H), 0.86-0.84 (m, 3H). GPC data: M_w = 9400, M_n = 7650, PDI = 1.23.

Synthesis of **P-3**: **M-1** (0.120 g, 0.230 mmol), **M-2** (0.084 g, 0.186 mmol), **M-3** (0.028 g, 0.044 mmol) and Pd(PPh₃)₄ (0.028 g, 5% e.q.) were dissolved in 14 mL toluene and 9 mL K₂CO₃ aqueous solution (2 M) was added. The reaction was processed with the method of **P-1** and gave **P-3** as a dark red solid (0.076 g, 54.3%). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.66 (m, 2H), 7.51-7.40 (m, 6H), 7.15-7.04 (m, 16H), 4.31 (s, 2H), 1.26 (s, 12H), 0.87-0.84 (m, 3H). GPC data: M_w = 7670, M_n = 5570, PDI = 1.38.

2. Supplementary Figures

Fig. S1 The Fluorescence spectra of P-2 (1×10^{-5} M corresponding to carbazole moiety in THF-H₂O mixtures, $\lambda_{ex} = 370$ nm)

Fig. S2 The Fluorescence spectra of P-3 $(1 \times 10^{-5} \text{ M corresponding to carbazole moiety})$

in THF-H₂O mixtures, $\lambda_{ex} = 370$ nm)

Fig. S3 The fluorescence spectra of model polymer in THF (1×10^{-5} M corresponding to carbazole moiety in THF, $\lambda_{ex} = 370$ nm)

Fig. S4 ECL-potential curves of P-1 to P-3 Pdots in 0.1 M PBS (pH = 7.4) containing 0.1 M KNO₃ and 25 mM H_2O_2 or $Na_2S_2O_8$ (PMT set at 400 V).

Fig. S5 ECL-potential curves of P-1 to P-3 Pdots in 0.1 M PBS (pH = 7.4) containing 0.1 M KNO₃ and 25 mM $K_2C_2O_4$ (PMT set at 400 V).

Fig. S6 CV of bare GCE in 0.1 M pH 7.4 PBS in the presence of 0.1 M TPrA as anodic co-reactant. Scan rate: 100 mV s^{-1} .

Fig. S7. (A) ECL–potential curves of Pdots in the presence of 0.01, 0.1, 1, 10, 100 and 500 μ M epinephrine (a to f) Inset: plot of ECL intensity vs. logarithm value of epinephrine concentration. (PMT set at 500 V) (B) ECL–potential curves of Pdots in

the presence of 0.01, 0.1, 1, 10, 100 μ M dopamine (a to e) Inset: plot of ECL intensity vs. logarithm value of dopamine concentration. (PMT set at 500 V) (C) FL spectra of Pdots in (a) absence and (b–d) presence of 100 μ M epinephrine (b) or dopamine(c), and 100 μ M oxidized epinephrine (d) or oxidized dopamine (e). (D) UV–vis absorption spectra of epinephrine (a) and oxidized epinephrine (b), dopamine (c) and oxidized dopamine(d).

Fig. S8. ECL–potential curves of 0.1 M pH 7.4 PBS containing 25 μ g mL ⁻¹ Pdots and 25mM TPrA in absence (black curve) and presence of 50 μ M AA (red curve) and UA (green curve). (PMT set at 500 V)

--140.15

¹H NMR of **P-1**

¹H NMR of **P-2**

¹H NMR of **P-3**

