Supporting Information for

A novel colorimetric and far-red emission ratiometric fluorescent

probe for the highly selective and ultrafast detection of hypochlorite

in water and its application in bioimaging

Yuanyuan Zhang, ^a Yufan Ma, ^b Zhuo Wang, ^b Xueyan Zhang, ^a Xin Chen, ^a Shicong Hou,*^a Hongmei Wang*^a

^aCollege of Science, China Agricultural University, Beijing, 100193, P.R. China ^bState Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China

*Corresponding authors : Phone: +86-10-62731881; Fax: +86-10-62731881

E-mail: houshc@cau.edu.cn; whmd@cau.edu.cn.

Table of Contents

- 1. Preparation of various analytes.
- 2. Determination of the detection limit.
- 3. Photostability studies.
- 4. Comparison the performances of **DCOH-FR-OCl** and reported OCl⁻ probes.
- 5. Effects of pH on fluorescent response of DCOH-FR-OCI for OCI-.
- 6. HPLC analyses for the proposed reaction mechanism.
- 7. The optimized structures of **DCOH-FR-OCl** and **DCOH**.
- 8. Absorption and fluorescence spectra of probe **DCOH-FR-OCl** with OCl⁻ and those
- of fluorophore DCOH
- 9. Fluorescence imaging.
- 10. ¹H NMR, ¹³C NMR and HRMS analyses of compounds.

1. Preparation of various analytes

The solutions of various analytes, including K⁺, Ca²⁺, Na⁺, Fe²⁺, Fe³⁺, Mg²⁺, Zn²⁺, Cu²⁺, ClO₄⁻, Cl⁻, Br⁻, I⁻, SCN⁻, SO₃²⁻, HCO₃⁻, NO₃⁻, NO₂⁻, HS⁻, S²⁻, Hey, Cys, GSH, 'OH, NO, tBuO', H₂O₂, ¹O₂, O₂⁻, ONOO⁻, and TBHP were prepared according to the following methods. The solutions of ions $(1 \times 10^{-2} \text{ M})$ were prepared by dissolving corresponding salt including KCl, CaCl₂, NaClO₄·H₂O, Fe(ClO₄)₂, Fe(ClO₄)₃, Mg(ClO₄)₂, Zn(ClO₄)₂·6H₂O, Cu(ClO₄)₂·6H₂O, NaClO₄, NaCl, KBr, KI, KSCN, Na₂SO₃, NaHCO₃, NaNO₃, NaNO₂, NaHS, and Na₂S in deionized water. Amino acids including Cys, Hey and GSH $(1 \times 10^{-2} \text{ M})$ were prepared in deionized water. 'OH was prepared by the Fenton reaction of Fe²⁺ with H₂O₂. ¹ NO was generated from the reaction of Fe²⁺ with t-BuOOH. ¹O₂ was obtained from OCl⁻ and H₂O₂. TBHP was prepared by diluting tert-butyl hydroperoxide aqueous solution.

2. Determination of the detection limit

The detection limit (DL) is calculated on the basis of the fluorescence titration using Eq. (1):

$$DL = 3\sigma/k \tag{1}$$

Where σ is the standard deviation of eleven blank measurements and *k* is the slope of the linear equation between the fluorescence intensities at 637 nm and the concentrations of OCl⁻.²

Fig. S1 (a) Fluorescence intensity of **DCOH-FR-OCI** (10 μ M) in the presence of different concentrations of OCl⁻ (0-80.0 equiv.) in a 100% aqueous solution at 25 °C; (b) fluorescence intensity of **DCOH-FR-OCI** (10 μ M) at 637 nm as a function of OCl⁻.

3. Photostability studies

Fig. S2 The stability of **DCOH-FR-OCI** and further addition of 60.0 equiv. OCI⁻ in a 100% aqueous solution.

4. Comparison the performances of DCOH-FR-OCl and reported

Probe	Colorimetric	Ratiometric	Far-infrared	λ (nm)	Reaction	Response	Stokes	Referen
	detection	fluorescence detection	emission and imaging		medium (v:v)	time	shift	ce
	_	Yes	No	λ _{ex} /λ _{em} =410, 554/501,578	DMF:PBS = 4:6	within 1 min	_	Ref. [3]

OCl⁻ probes

MeC C C C C C C C C C C C C C C C C C C	No	No (fluorescence turn-on)	No	$\lambda_{ex}/\lambda_{em}$ =370/ 495	DMSO:PBS = 9:1	within 10 min	125 nm	4
	No	No (fluorescence turn-on)	No	λ _{ex} /λ _{em} =490/ 527	Aqueous solution	within 1 min	37 nm	5
$(\mathbf{y}_{NO_2}^{o}, \mathbf{y}_{NO_2}^{o}, \mathbf{y}_{NO_2}^{o})$	No	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em}$ =480/ 525	DMF:H ₂ O = 2:8	100 s	45 nm	6
	_	No (fluorescence turn-on)	Yes	$\lambda_{ex}/\lambda_{em}=543/$ 625	HEPES 37 ℃	15 min	82 nm	7
	No	No (fluorescence turn-on)	No	λ _{ex} /λ _{em} =498/5 16	PBS	10 min	18 nm	8
	_	Yes	No	$\lambda_{\rm ex}/\lambda_{\rm em} = 410/$ 470, 580	$DMF:NaH_2PO_4$ $= 4:6$	Within 100 s	170 nm	9
	No	No (fluorescence turn-off)	Yes	$\lambda_{ex}/\lambda_{em}=600/6$ 72	PBS	1 min	72 nm	10
	_	Yes	No	$\lambda_{ex}/\lambda_{em}$ =350/ 440, 585	EtOH:Na ₂ HPO ₄ = $3:7$	2 min	235 nm	11
o o o o o o o o o o o o o o o o o o o	No	No (fluorescence turn-on)	No	$\lambda_{ex}/\lambda_{em}$ =460/ 540	PBS	Within 3 s	80 nm	12
N N N H BH3	No	Yes	No	$\lambda_{ex}/\lambda_{em}=326/$ 361, 450	CH ₃ CN:H ₂ O = 1:9	within 1 min	124 nm	13
	Yes	No (fluorescence turn-on)	No	$\lambda_{ex}/\lambda_{em}=553/$ 580	DMSO:PBS = 1:99	1 min	27 nm	14

	Yes	No (fluorescence turn-on)	No	$\lambda_{ex}/\lambda_{em}$ =440/ 551	DMSO: PBS = 9:1	within 1 min	111 nm	15
H ₂ N C C C C C C C C C C C C C C C C C C C	Yes	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em} =$ -/515	EtOH:H ₂ O = 1:19	300 s	_	16
	_	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em}=$ 398/468	PBS buffer (pH 7.4, containing 20% CH ₃ CN	5 min	70 nm	17
	Yes	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em} =$ 550/575	CH ₃ CN:PBS= 3:7	40 min	25 nm	18
N H	No	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em}=$ 375/500	EtOH:H ₂ O = 1:1	Within 10 s	125 nm	19
Jange Jange	Yes	Yes	No	$\lambda_{\rm ex}/\lambda_{\rm em} =$ 414/473, 594	DMF:PBS=1:1	_	180 nm	20
rado and la	Yes	Yes	No	$\lambda_{\rm ex}/\lambda_{\rm em} =$ 420/483, 570	PBS buffer (pH 7.4, containing 0.5% EtOH	Within 1 min	150 nm	21
K K K K K K K K K K K K K K K K K K K	Yes	No (fluorescence turn-on)	No	$\lambda_{\rm ex}/\lambda_{\rm em}=$ $480/508$	PBS:MeOH= 1:1	30 min	28 nm	22
$R = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2$	No	No	No	$\frac{\lambda_{ex}}{\lambda_{em}} = 410/547$	PBS: EtOH = 1:1	2 min	137 nm	23
NC CN	Yes	Yes	Yes	$\lambda_{\rm ex}/\lambda_{\rm em} =$ 479/522, 637	Aqueous solution	within 3 s	158 nm	This work

Table S1.	A comparison betw	een the probe DCOH-FR	R-OCI and other reported probes for
-----------	-------------------	-----------------------	-------------------------------------

OCI[−].

5. Effects of pH on fluorescent response of DCOH-FR-OCl for OCI-

Fig. S3 The effects of pH on fluorescence response of DCOH-FR-OCl to OCl^- in a 100% aqueous solution.

6. HPLC analyses for the proposed reaction mechanism.

Fig. S4 HPLC analyses of the **DCOH-FR-OCI**, **DCOH** and the reaction solution of the **DCOH-FR-OCI** and OCI[–].

7. The optimized structures of DCOH-FR-OCl and DCOH

Fig. S5 The optimized structures of **DCOH-FR-OCI** and **DCOH** at the B3LYP/6-31G (d) basis set by using Gaussian 16.

8. Absorption and fluorescence spectra of probe DCOH-FR-OCl with

OCl⁻ and those of fluorophore DCOH

Fig. S6 The normalized absorption (a) and fluorescence spectra (b) of probe DCOH-FR-OCI (10 μ M) in the absence and presence of OCl⁻ (60.0 equiv.) and those of DCOH (10 μ M), λ_{ex} =479 nm.

9. Fluorescence imaging

(1) Fluorescence imaging of exogenous OCI- in RAW 264.7 cells.

Two groups of experiments were set for imaging exogenous OCI-. In the control group, the cells were cultured with 10 μ M of **DCOH-FR-OCI** for 30 min in an atmosphere of 5% CO₂ at 37 °C, and washed with PBS three times. Then, the fluorescence imaging of the cells was carried out. In the test group, the cells were first treated with 10 μ M of **DCOH-FR-OCI** for 30 min, followed by incubation with 600 μ M OCI⁻ for another 30 min. After washing with PBS three times, the fluorescence imaging of the cells was carried out. Fluorescence images were obtained on Leica Microsystems D-35578 confocal laser-scanning microscope with a 40 β objective lens with the excitation wavelengths of 405 nm and 488 nm. The fluorescence emissions were collected at 500–600 nm (green channel) and 600–700 nm (red channel), respectively.

(2) Fluorescence imaging of endogenous OCI- in RAW 264.7 cells.

Three groups of experiments were set for imaging endogenous OCI⁻. In the control group, the cells were cultured with 10 μ M of **DCOH-FR-OCI** for 30 min in an atmosphere of 5% CO₂ at 37 °C, and washed with PBS three times. Then, the fluorescence imaging of the cells was carried out. The cells were first treated with 200 μ M 4-aminobenzoic acid hydrazide (ABAH, an inhibitor of MPO) for 60 min, followed by incubation with **DCOH-FR-OCI** for 30 min. After washing with PBS three times, the fluorescence imaging of the cells was carried out. The cells were first treated with PBS three times, the fluorescence imaging of the cells was carried out. The cells were first treated with 1.0 μ g mL⁻¹ phorbol 12-myristate 13-acetate (PMA, a ROS stimulant) for 60 min, followed by incubation with **DCOH-FR-OCI** for 30 min. After washing with PBS three times, the fluorescence imaging of the cells was carried out. The excitation wavelengths were 405 nm and 488 nm. The fluorescence emissions were collected at 500–600 nm (green channel) and 600–700 nm (red channel), respectively.

10. ¹H NMR, ¹³C NMR and HRMS analyses of compounds

Fig. S7 The ¹H NMR spectra of **DCOH** in DMSO- d_6 .

Fig. S8 The ¹³C NMR spectra of **DCOH** in DMSO- d_6 .

Fig. S9 High resolution mass spectra of DCOH.

Fig. S10 The ¹H NMR spectra of DCOH-FR-OCl in CDCl₃.

Fig. S11 The ¹³C NMR spectra of DCOH-FR-OCl in CDCl₃.

Fig. S12 High resolution mass spectra of DCOH-FR-OCl.

References

- 1 Y.-K. Yang, H. J. Cho, J. Lee, I. Shin and J. Tae, Org. Lett., 2009, 11, 859-861.
- 2 M. Shyamal, P. Mazumdar, S. Maity, S. Samanta, G. P. Sahoo and A. Misra, ACS Sens., 2016, 1, 739-747.
- 3 L. Long, D. Zhang, X. Li, J. Zhang, C. Zhang and L. Zhou, Anal. Chim. Acta., 2013, 775, 100-105.
- 4 X. Wang, X. Wang, Y. Feng, M. Zhu, H. Yin, Q. Guo and X. Meng, *Dalton Trans.*, 2015, **44**, 6613-6619.
- 5 J. J. Hu, N.-K. Wong, M.-Y. Lu, X. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Y.-T. Kao, J. Shen and D. Yang, *Chem. Sci.*, 2016, **7**, 2094-2099.
- 6 M. Ren, Z. Li, J. Nie, L. Wang and W. Lin, *Chem. Commun.*, 2018, **54**, 9238-9241.
- 7 Y. Huang, N. He, Y. Wang, L. Zhang, Q. Kang, Y. Wang, D. Shen, J. Choo and L. Chen, J. Mater. Chem. B, 2019, 7, 2557-2564.
- 8 D. Ji, G. Li, S. Zhang, M. Zhu, C. Li and R. Qiao, Sens. Actuator B-Chem., 2018, 259, 816-824.
- 9 Y.-R. Zhang, X.-P. Chen, S. Jing, J.-Y. Zhang, Q. Yuan, J.-Y. Miao and B.-X. Zhao, *Chem. Commun.*, 2014, **50**, 14241-14244.
- 10 B. Zhu, L. Wu, M. Zhang, Y. Wang, C. Liu, Z. Wang, Q. Duan and P. Jia, *Biosens. Bioelectron.*, 2018, 107, 218-223.
- 11 Y.-R. Zhang, N. Meng, J.-Y. Miao and B.-X. Zhao, Chem. Asian J., 2015, 21, 19058-19063.
- 12 B. Zhu, L. Wu, H. Zhu, Z. Wang, Q. Duan, Z. Fang, P. Jia, Z. Li and C. Liu, Sens. Actuator B-Chem., 2018, 269, 1-7.
- 13 Y. L. Pak, S. J. Park, G. Song, Y. Yim, H. Kang, H. M. Kim, J. Bouffard and J. Yoon, *Anal. Chem.*, 2018, **90**, 12937-12943.
- 14 J. Zhou, L. Li, W. Shi, X. Gao, X. Li and H. Ma, Chem. Sci., 2015, 6, 4884-4888.
- 15 H. Feng, Y. Wang, J. Liu, Z. Zhang, X. Yang, R. Chen, Q. Meng and R. Zhang, *J. Mater. Chem. B*, 2019, **7**, 3909-3916.
- 16 C. Zhang, Q. Nie, I. Ismail, Z. Xi and L. Yi, Chem. Commun., 2018, 54, 3835-3838.

- 17 L. Long, Y. Wu, L. Wang, A. Gong, F. Hu and C. Zhang, *Chem. Commun.*, 2015, **51**, 10435-10438.
- 18 Z. Tang, X.-L. Ding, Y. Liu, Z.-M. Zhao and B.-X. Zhao, *RSC Adv.*, 2015, **5**, 99664-99668.
- 19 L. Yuan, L. Wang, B. K. Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. Peng, Q.-H. Xu and Y.-T. Chang, *J. Am. Chem. Soc.*, 2015, **137**, 5930-5938.
- 20 L. Yuan, W. Lin, Y. Xie, B. Chen and J. Song, *Chem. Asian J.*, 2012, **18**, 2700-2706, S2700/2701-S2700/2721.
- 21 S.-L. Shen, X. Zhao, X.-F. Zhang, X.-L. Liu, H. Wang, Y.-Y. Dai, J.-Y. Miao and B.-X. Zhao, *J. Mater. Chem. B*, 2017, **5**, 289-295.
- 22 W.-C. Chen, P. Venkatesan and S.-P. Wu, Anal. Chim. Acta., 2015, 882, 68-75.
- 23 B. Zhu, P. Li, W. Shu, X. Wang, C. Liu, Y. Wang, Z. Wang, Y. Wang and B. Tang, *Anal. Chem.*, 2016, **88**, 12532-12538.