Supporting Information

A Fluorescence "off-on-off" sensing platform based on bimetallic

gold/silver nanoclusters for ascorbate oxidase activity monitoring

Mengjun Wang, Mengke Wang, Guannan Wang*b, Xingguang Su*a

^a College of Chemistry, Jilin University, Changchun, 130012, PR China

^b College of Medical Engineering, Jining Medical University, Jining, 272067, PR China

*Corresponding author

Tel.: +86-431-85168352

E-mail address: chemwangguannan@gmail.com (G. Wang), suxg@jlu.edu.cn (X. Su).

Reagents

Reduced L-glutathione (GSH), trypsin (Try), hyaluronidase (HAase), bovine serum albumin (BSA), hemoglobin (Hb), urease (Urea), lysozyme (Lys) and Human serum albumin (HSA) AgNO₃ were ordered from Sangon Biotech (Shanghai) Co. Ltd. NaH₂PO₄, Na₂HPO₄ and pepsin (pep) were obtained from Sino-pharm Co. (Shanghai, China). Phosphate buffer saline (PBS, 100 mmol L⁻¹) were prepared with different volume ratio of 100 mmol L⁻¹ NaH₂PO₄ and 100 mmol L⁻¹ Na₂HPO₄. Protamine (pro) was purchased from Shanghai Aladdin biochemical Co. Ltd. HAuCl₄ was ordered from Acros Organics. Ascorbic acid and hydrogen peroxide (H₂O₂) were obtained from Beijing Dingguo Biotechnology Co. Ltd. Ultrapure water with good resistivity ($\rho \ge 18 \text{ M}\Omega$ cm⁻¹) throughout this experiment was used. The pH values were recorded by PHS-3C (Hangzhou, China). All chemicals are obtained from formal chemical suppliers and can be used directly without any further purification.

Instruments

The ultraviolet-visible (UV–vis) absorption spectra, Photoluminescence (PL) spectra and Fourier transform infrared (FT-IR) spectra were obtained by a Varian GBC Cintra 10e UV–vis Spectrophotometer (Shimadzu Co., Ltd. Japan), RF-5301 fluorescence spectrophotometer and Thermo Nicolet 360 FTIR spectrometer, respectively. Transmission electron microscope (TEM) was carried on JEM-2100F. Fluorescence quantum yield and Fluorescence lifetime data were obtained on Edinburgh FLS920.

Fig. S1 The fluorescence spectra of papain-capped Au/Ag NCs with different molar ratio of gold

and silver.

Fig. S2 Optimal conditions for preparing papain-protected Au/Ag NCs. Effect of NaOH concentration (a), the concentration of papain (b), reaction time (c) and reaction temperature (d) on the FL intensity of papain-protected Au/Ag NCs.

Fig. S3 The effect of NaCl concentration (a), pH (b), and temperature (c) on the Normalized FL

intensity of papain-capped Au/Ag NCs.

Fig. S4 TEM images of papain-protected Au NCs (a) and papain-protected Au/Ag NCs

Fig. S5 Effect of reaction time (a), temperature (b) and pH (c) on the fluorescence intensity of papain-capped Au/Ag NCs/H₂O₂ system in the presence and absence of AA.

Detection mode	Material	Linear range	LOD	References
		(mU mL ⁻¹)	(mU mL ⁻¹)	
Ratiometric	C-dots/ oxOPD	0.04–5	0.017	[1]
fluorescent		0.04–8	0.012	
and colorimetric				
Fluorometric	DNA-Au/Ag NCs	10-200	4.8	[2]
and colorimetric				
Fluorescence	Mn@ZnGe NPs	1250-2500	728	[3]
Fluorescence	Papain-capped Au/Ag NCs	5-80	1.72	This work

Table S1 Comparison of our method with other methods for the determination of AAO

Reference

- 1. Y. Wang, Y. Yang, W. Liu, F. Ding, P. Zou, X. Wang, Q. Zhao and H. Rao, *Mikrochim Acta*, 2019, **186**, 246.
- 2. S. Liu and S. Pang, *Mikrochim Acta*, 2018, **185**, 426.
- X. Y. Han, Z. H. Chen, Q. X. Fan, K. N. Li, F. Y. Mu, Q. Luo, Z. Jin, G. Shi and M. Zhang, *Mikrochim Acta*, 2019, **186**, 466.