Supporting Information

High sensitive sensor with HEPES-enhanced electrochemiluminescence of benzo[3]uril for Fe^{3+} and its application in human serum

Yao Lei ${ }^{1}$, Fei Qiu ${ }^{1}$, Xian-Yi Jin ${ }^{1,2}$, Jian-Mei Yang ${ }^{1}$, Mao Liu ${ }^{1}$, Qing-Mei Ge ${ }^{1}$, Hang Cong ${ }^{1, *}$, and Zhu Tao ${ }^{1}$${ }^{1}$ Key laboratory of macrocyclic and supramolecular chemistry of Guizhou Province, GuizhouUniversity, Guiyang 550025, China. Email: hcong@ gzu.edu.cn${ }^{2}$ School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang550001, China.
Title, authors and description of supporting information contents. S1
Figure $\mathrm{S}^{1}{ }^{1} \mathrm{H}$ NMR spectrum of benzo[3]uril S2
Figure $\mathrm{S} 2{ }^{1} \mathrm{C}$ NMR spectrum of benzo[3]uril S3
Figure S3 HRMS spectrum of benzo[3]uril S4
Figure S4 Effects of electrolytes on ECL intensity S5
Figure S5 Effects of scan rates on ECL intensity. S6
Figure S6. Cyclic voltammograms of benzo[3]uril and with the incubation of Fe^{3+} S7
Figure S7 Effects of incubation time on ECL intensity S8
Figure S8 Competitive selectivity of the ECL sensor. S9
Figure S9 Competitive interferences of the ECL sensor. S10
Figure S10. The reproducibility of the proposed ECL modified electrodes S11
Description of the source of human serum and preparation for the Fe^{3+} solution S12

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=6: 1$) of benzo[3]uril.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=6: 1\right)$ of benzo[3]uril.

Figure S3. HRMS spectra of benzo[3]uril.

Figure S4. Effects of different electrolytes (0.1 M CBS , Tris-HCl, PBS, BBS, $\mathrm{pH}=7.4$), containing 0.050 M HEPES on the ECL intensity with the decorated electrode.

Figure S5. The ECL intensity of decorated electrode in the 0.1 M PBS buffer $(\mathrm{pH}=7.4)$ containing 0.050 M HEPES with different scan rates.

Figure S6. Cyclic voltammograms of benzo[3]uril and with the incubation of Fe^{3+} in the 0.05 M HEPES in the PBS solution at $\mathrm{pH}=7.4$.

Figure S7. Effects of the incubation time of the decorated electrode into Fe^{3+} aqueous solution (5min, 10min, 20min, 30min, 40min) to the ECL intensity of the sensor in $0.10 \mathrm{M} \mathrm{PBS}(\mathrm{pH}=7.4)$ containing 0.050 M HEPES, and scan rate $100 \mathrm{mV} / \mathrm{s}^{-1}$.

Figure S8. Competitive selectivity of the ECL sensor toward metal cations.

Figure S9. Competitive interferences of the ECL sensor toward Fe^{3+} in the presence of other metal cations

Figure S10. The reproducibility of the proposed ECL modified electrodes.

Description of the source of human serum and preparation for the $\mathbf{F e}^{\mathbf{3 +}}$ solution

Samples of deproteinized human serum were obtained from the Hospital of Guizhou University, which was applied for analysis without any further process.

The solution of Fe^{3+} was prepared by deionized water without acidification, and we did not observe the formation of any deposits by hydrolysis of the metal cations.

