Supporting Information

High sensitive sensor with HEPES-enhanced electrochemiluminescence of benzo[3]uril for Fe³⁺ and its application in human serum

Yao Lei¹, Fei Qiu¹, Xian-Yi Jin^{1,2}, Jian-Mei Yang¹, Mao Liu¹, Qing-Mei Ge¹, Hang Cong^{1,*}, and Zhu Tao¹

¹Key laboratory of macrocyclic and supramolecular chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China. Email: <u>hcong@gzu.edu.cn</u> ²School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550001, China.

Title, authors and description of supporting information contents 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
Figure S1 ¹ H NMR spectrum of benzo[3]uril
Figure S2 ¹ C NMR spectrum of benzo[3]uril
Figure S3 HRMS spectrum of benzo[3]uril
Figure S4 Effects of electrolytes on ECL intensity
Figure S5 Effects of scan rates on ECL intensity
Figure S6. Cyclic voltammograms of benzo[3]uril and with the incubation of Fe ³⁺ S7
Figure S7 Effects of incubation time on ECL intensity
Figure S8 Competitive selectivity of the ECL sensor
Figure S9 Competitive interferences of the ECL sensor
Figure S10. The reproducibility of the proposed ECL modified electrodesS11
Description of the source of human serum and preparation for the Fe ³⁺ solutionS12

Figure S1. ¹H NMR spectra (400 MHz, CDCl₃: CD₃OD = 6:1) of benzo[3]uril.

Figure S2. ¹³C NMR spectra (100 MHz, $CDCl_3$: $CD_3OD = 6:1$) of benzo[3]uril.

Figure S3. HRMS spectra of benzo[3]uril.

Figure S4. Effects of different electrolytes (0.1 M CBS, Tris-HCl, PBS, BBS, pH = 7.4), containing 0.050 M HEPES on the ECL intensity with the decorated electrode.

Figure S5. The ECL intensity of decorated electrode in the 0.1M PBS buffer (pH = 7.4) containing 0.050 M HEPES with different scan rates.

Figure S6. Cyclic voltammograms of benzo[3]uril and with the incubation of Fe^{3+} in the 0.05M HEPES in the PBS solution at pH=7.4.

Figure S7. Effects of the incubation time of the decorated electrode into Fe^{3+} aqueous solution (5min, 10min, 20min, 30min, 40min) to the ECL intensity of the sensor in 0.10 M PBS (pH = 7.4) containing 0.050 M HEPES, and scan rate 100 mV/s⁻¹.

Figure S8. Competitive selectivity of the ECL sensor toward metal cations.

Figure S9. Competitive interferences of the ECL sensor toward Fe^{3+} in the presence of other metal cations

Figure S10. The reproducibility of the proposed ECL modified electrodes.

Description of the source of human serum and preparation for the Fe³⁺ solution

Samples of deproteinized human serum were obtained from the Hospital of Guizhou University, which was applied for analysis without any further process.

The solution of Fe^{3+} was prepared by deionized water without acidification, and we did not observe the formation of any deposits by hydrolysis of the metal cations.