Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020

## Supporting Information: Spectroelectrochemical and Computational Studies of Tetrahydrocannabinol (THC) and carboxy-Tetrahydrocannabinol (THC-COOH)

Shruti D. Bindesri<sup>a</sup>, Ricardo Jebailey<sup>a</sup>, Najwan Albarghouthi<sup>a</sup>, Cory C. Pye<sup>a</sup>, Christa L. Brosseau<sup>a\*</sup>

## **Table of Contents**

| Computational Studies – Methodology                                  | Page 2    |
|----------------------------------------------------------------------|-----------|
| Figure S-1: Chemical structures included in calculations             | Pages 3-4 |
| Table S-1: Calculated Raman modes for THC and THC-COOH, along        | Pages 5-7 |
| with vibrational mode assignment                                     |           |
| Figure S-2. Comparison of experimental EC-SERS signal obtained for   | Page 8    |
| THC at -0.4 V (top) with calculated normal Raman modes for THC using |           |
| B3LYP/6-31G* level of theory (bottom)                                |           |
| Figure S-3. Comparison of experimental EC-SERS signal obtained for   | Page 9    |
| THC-COOH at -0.4 V (top) with calculated normal Raman modes for      |           |
| THC-COOH using B3LYP/6-31G* level of theory (bottom)                 |           |

## **Computational Studies - Methodology**

A series of smaller model molecules were calculated first. Phenol (Cs #1) prefers to have its hydroxyl group in the plane of the benzene ring, with the higher energy alternative ( $C_s \# 2$ ) being the conformational transition state (~12 kJ/mol) connecting the two isoenergetic forms. **Dimethylbenzopyranol** prefers to be nonplanar ( $C_1$ ) in one of two forms, with the form with the hydroxo group pointing away from the pyran ring ( $C_1 \# 1$ ) preferred by 5-8 kJ/mol. The planar form ( $C_s$  #1) is the transition state (~2.5 kJ/mol) connecting the two stereoisomers. **Dimethyldihydrobenzopyranol** is also nonplanar  $(C_1)$  in one of two forms, with the form with the hydroxo group pointing away from the dihydropyran ring ( $C_1 \# 1$ ) preferred by 5-8 kJ/mol. The planar Cs forms are second-order saddle points. *meta*-Pentylphenol can have one of four Cs forms, differing in the hydroxyl and pentyl orientation with little energetic difference between them (1 kJ/mol). Scans about the dihedral angle connecting the ring to the pentyl chain indicate that nonplanar  $C_1$  form would be preferred. The two  $C_1$  structures thus derived are nearly isoenergetic, but lower than the C<sub>s</sub> forms by 5-8 kJ/mol. These calculations establish the preferred conformation of the hydroxyl group and the pentyl side-chain. For the larger molecules that follow, none of the MP2 calculations were attempted for computational expediency. Two low-energy forms ( $C_1 #1$ , #2) of **pentyldimethylbenzopyranol** were found to be essentially isoenergetic (0.05 kJ/mol), and the same holds true of pentyldimethyldihydrobenzopyranol (0.1 kJ/mol). The barrier to their interconversion via a more planar benzo(dihydro)pyranol ring would be low. Next, the ring systems of several cannabinoids were constructed (without the pentyl groups). Cannabinol (no pentyl) C<sub>s</sub> #1 and C<sub>1</sub> #1 differ in energy by 12-13 kJ/mol. 7,8-dihydrocannabinol (no pentyl) and **12,13-dihydrocannabinol** (no pentyl) have no symmetry, and the latter is more stable by 30-40 kJ/mol. 7,8,12,13-tetrahydrocannabinol (no pentyl) also has no symmetry







dimethyldihydrobenzopyranol C<sub>s</sub> #2



dimethyldihydrobenzopyranol  $C_1$  #2

pentylphenol Cs #3



pentylphenol Cs #1



pentylphenol Cs #2

pentylphenol C $_1$ #1





pentylphenol C<sub>s</sub> #4



pentylphenol C $_1\,\#2$ 



3

## pentyldimethylbenzopyranol $C_1 \# 1$

 $\begin{array}{l} pentyl dimethyl benzopyranol \\ C_1 \# 2 \end{array}$ 

pentyldimethyldihydrobenzopyranol  $C_1$ #1

pentyldimethyldihydrobenzopyranol $\mathrm{C}_1\,\#2$ 









tetrahydrocannabinol (no pentyl)  $C_1 \# 1$ 









7,8-dihydrocannabinol (no pentyl)  $C_1 \# 1$ 

tetrahydrocannabinol C<sub>1</sub> #1





12,13-dihydrocannabinol (no pentyl)  $C_1\,\#1$ 



norcarboxytetrahydrocannabi nol $\mathrm{C}_1\,\#\!1$ 



Figure S-1. Model structures examined for computational work

**Table 1.** Calculated Raman modes for THC and THC-COOH, along with vibrational mode assignment.

| Tetrahydrocannabinol (THC) |                                     | 11-Nor-9-Carboxy-THC (THC-COOH) |                                     |
|----------------------------|-------------------------------------|---------------------------------|-------------------------------------|
| Calculated Raman           | Band Assignment                     | Calculated Raman                | Band Assignment                     |
| Shift / cm <sup>-1</sup>   |                                     | Shift / cm <sup>-1</sup>        |                                     |
| 361                        | OH twist                            | 352                             | OH twist, mixed                     |
| 416                        | Mixed, methyl rock                  | 402                             | Mixed, methyl rock                  |
| 442                        | Mixed, δ(C-C)                       | 444                             | Mixed, δ(C-C)                       |
| 474                        | Mixed, δ(Me-C)                      | 484                             | Methyl scissor                      |
| 493                        | ring def                            | 494                             | ring def                            |
| 505                        | ip def (ring)                       | 504                             | ip def (ring)                       |
| 550                        | ip def (ring)                       | 547                             | ip def (ring)                       |
| 577                        | ip def (ring)                       | 578                             | OH torsion / carboxyl               |
|                            |                                     |                                 | twist                               |
| 613                        | oop def (ring)                      | 616                             | oop def (ring)                      |
| 686                        | ip def (ring)                       | 686                             | ring def                            |
| 737                        | oop def (ring)                      | 736                             | oop def (ring)                      |
| 784                        | $CH_2 \text{ rock (ring)} + CH$     |                                 |                                     |
|                            | oop def                             |                                 |                                     |
| 798                        | CH <sub>2</sub> rock, $\nu$ (C-C=C) | 794                             | CH <sub>2</sub> rock, $\nu$ (C-C=C) |
| 856                        | CH oop def (ring) +                 |                                 |                                     |
|                            | CH <sub>2</sub> def (chain)         |                                 |                                     |
| 893                        | Me rock + CH oop                    | 880                             | C-O str. (ring)                     |

| 904  | Chain Me rock                    | 903  | Chain Me rock                     |
|------|----------------------------------|------|-----------------------------------|
| 924  | CH <sub>2</sub> rock             |      |                                   |
| 946  | CH <sub>3</sub> rock, ring def.  | 941  | CH <sub>3</sub> rock, ring def.   |
| 1007 | CH <sub>3</sub> rock, v(C-C)     | 1007 | CH <sub>3</sub> rock, $\nu$ (C-C) |
| 1013 | CH <sub>3</sub> rock, $v$ (C-C)  | 1015 | $CH_3$ rock, $v(C-C)$             |
| 1041 | v(C-C)                           | 1032 | $CH_3$ rock, $v(C-C)$             |
| 1065 | v(C-C)                           | 1065 | v(C-C)                            |
| 1108 | v(C-C) ring                      | 1107 | v(C-C)                            |
| 1127 | v(C-C=C)                         | 1129 | v(C-C=C)                          |
| 1131 | v(C-C) alkyl chain               | 1131 | v(C-C) alkyl chain                |
| 1176 | $\delta$ (H-C=C), v(C-C),        | 1181 | δ(H-C=C), v(C-C),                 |
|      | CH <sub>3</sub> rock             |      | CH <sub>3</sub> rock              |
| 1206 | δ(O-H), ring twist               | 1209 | $\delta$ (O-H), ring twist        |
| 1239 | v(C-C) ring                      | 1240 | mixed, CH ip def +                |
|      |                                  |      | OH def + CC str                   |
| 1265 | CH <sub>2</sub> twist ring       | 1263 | CH <sub>2</sub> twist ring        |
| 1311 | $\delta$ (C-H) (ring junction)   |      |                                   |
| 1344 | CH <sub>2</sub> twist chain      | 1344 | CH <sub>2</sub> twist chain       |
| 1362 | CH <sub>2</sub> twist ring + HCC | 1360 | CH <sub>2</sub> twist ring + HCC  |
|      | ip bend                          |      | ip bend+ CC str.                  |
| 1387 | $CH_2$ wag, $\delta$ (=C-H)      | 1387 | $CH_2$ wag, $\delta(=C-H)$        |

| 1401 | ip def, coupled to                 | 1404 | ip def, coupled to                       |
|------|------------------------------------|------|------------------------------------------|
|      | δ(=C-H)                            |      | δ(=C-H)                                  |
| 1426 | δ <sub>s</sub> (CH <sub>3</sub> )  | 1421 | CH ip bend + $CH_2$                      |
|      |                                    |      | wag + $\delta_s(CH_3)$                   |
| 1496 | δ <sub>s</sub> (CH <sub>3</sub> )  | 1496 | δ <sub>s</sub> (CH <sub>3</sub> )        |
| 1507 | CH scissor, acyl chain             | 1508 | CH scissor, acyl chain                   |
| 1517 | δ <sub>as</sub> (CH <sub>3</sub> ) | 1517 | δ <sub>as</sub> (chain CH <sub>3</sub> ) |
| 1612 | v(C-C=C) localized                 | 1613 | v(C-C=C) localized                       |
| 1659 | v(C-C=C)                           | 1660 | v(C-C=C)                                 |
| 1719 | v(C=C)                             | 1686 | v(C=C)                                   |
|      |                                    | 1767 | v(C=O)                                   |



**Figure S-2.** Comparison of experimental EC-SERS signal obtained for THC at -0.4 V (top) with calculated normal Raman modes for THC using B3LYP/6-31G\* level of theory (bottom).



**Figure S-3.** Comparison of experimental EC-SERS signal obtained for THC-COOH at -0.4 V (top) with calculated normal Raman modes for THC-COOH using B3LYP/6-31G\* level of theory (bottom).