Electronic Supplementary Materials

An ultrasensitive and selective fluorescence nanosensor based on porphyrinic metal-organic framework nanoparticles for Cu²⁺ detection

Changming Cheng^{1,2*}, Ruolin Zhang¹, Jiuhai Wang¹, Yu Zhang³, Chunyi Wen¹, Youhua Tan¹, Mo Yang^{1*}

¹Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China

²Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, PR China

³Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, Australia

*Authors to whom any correspondence should be addressed.

Changming Cheng, E-mail: chengcm2019@outlook.com

Mo Yang, E_mail: Mo.Yang@polyu.edu.hk

Figure S1. Zeta potential of MOF-525 NPs at pH=7.4.

Figure S2. Time-dependent fluorescence response of MOF-525 NPs (5 mg L^{-1}) in HEPES solution (20 mM, pH 7.4) in the presence of Cu²⁺ (250 nM).

Figure S3. Cell viability of MOF-525 NPs.

Fluorescence probe	Linear range (nM)	Limit of detection (nM)	Reference
^a UiO-66(OH) ₂ @PCN-224	0~1.0	0.068	S1
^b g-C ₃ N ₄ NSs	0~45	1.2	S2
^c BPEI-CQDs	10~1100	6	S3
^d CdSe/ZnS QDs	0~600	0.15	S4
^e SiO ₂ @ZIF-8 NPs	10~500	3.8	S5
^f Au-Ag NCs	0.5~2500	0.30	S6
^g PEI-Ag NCs	10~7700	10	S7
^h CdTe QDs	10~1000	2.3	S8
ⁱ MOF-525 NPs	7-525 NPs 1.0~250		This work

Table S1. Comparison of different fluorescence sensors for Cu²⁺ detection.

^aUiO-66(OH)₂@PCN-224: PCN-224 encapsulated UiO-66(OH)₂ composite;

^{*b*}g-C₃N₄ NSs: Graphitic carbon nitride nanosheets;

^cBPEI-CQDs: Poly(ethylenimine)-functionalized carbon quantum dots;

^dCdSe/ZnS QDs: CdSe/ZnS quantum dots;

^eSiO₂@ZIF-8 NPs: SiO₂@zeolitic imidazolate framework-8 nanoparticles;

^fAu-Ag NCs: Gold-silver nanoclusters;

^gPEI-Ag NCs: Polyethyleneimine-protected silver nanoclusters;

^{*h*}CdTe QDs: CdTe quantum dots;

ⁱMOF-525 NPs: Metal-organic framework-525 nanoparticles;

Samples	Spiked (nM)	Proposed Method			ICP-MS Method	
		Found (nM)	Recovery (%)	RSD (%)	Found (nM)	RSD (%)
1	0.00	10.68	-	1.9	12.92	4.7
2	50.00	58.17	95.0	1.9	58.29	1.5
3	100.00	106.93	96.3	1.2	109.11	1.1
4	150.00	162.63	101.3	4.1	164.73	3.3

Table S2. Determination of Cu^{2+} in drinking water.

References

- S1. J. Chen, H. Chen, T. Wang, J. Li, J. Wang and X. Lu, Anal. Chem., 2019, 91, 4331-4336.
- S2. N. Y. Cheng, P. Jiang, Q. Liu, J. Q. Tian, A. M. Asiri and X. P. Sun, *Analyst*, 2014, 139, 5065-5068.
- Y. Q. Dong, R. X. Wang, G. Li, C. Q. Chen, Y. W. Chi and G. N. Chen, *Anal. Chem.*, 2012, 84, 6220-6224.
- S4. L. H. Jin and C. S. Han, Anal. Chem., 2014, 86, 7209-7213.
- S5. Y. Song, D. Hu, F. Liu, S. Chen and L. Wang, *Analyst*, 2015, 140, 623-629.
- S6. N. Zhang, Y. M. Si, Z. Z. Sun, L. J. Chen, R. Li, Y. C. Qiao and H. Wang, *Anal. Chem.*, 2014, 86, 11714-11721.
- S7. Z. Q. Yuan, N. Cai, Y. Du, Y. He and E. S. Yeung, Anal. Chem., 2014, 86, 419-426.
- S8. X. Zhao, J. Du, Y. Z. Wu, H. Z. Liu and X. P. Hao, J. Mater. Chem. A, 2013, 1, 11748-11753.