Spontaneous reduction of KMnO4 with MoS2 quantum dots for glutathione sensing in tumor

Yong Wang,^[a, b] Lulu Cai,^[b] Qi Wang,^[b] Mingming Zhao,^[b] Lina Dong,^[b] Kai Xu,^{*[a,b]} Jingjing Li ^{*[a,b]}

Fig. S1 The excitation and emission fluorescence spectra of MoS₂ QDs.

Fig. S2 An energy diagram showing the Fermi level of MoS_2 QDs lies above the reduction potential of MnO_4^- (+ 0.595 V versus SHE).

Fig. S3 Fluorescence spectra of MnO_2/MoS_2 nanocomplex with different $KMnO_4$ -to- MoS_2 molar ratio in the presence or absence of GSH.

Fig. S4 T_1 -weighted MR images and T_1 -mapping images of MnO₂/MoS₂ nanocomplex with different KMnO₄-to-MoS₂ molar ratio in the presence or absence of GSH. (1)-(8): 3.3:1, 4.9:1, 6.6:1, 8.2:1, 12.3:1, 16.4:1, 24.6:1, and 28.8:1.

Fig. S5 T_1 -weighted MR images (A) and T_1 -mapping images (B) of MnO₂/MoS₂ nanocomplex with different concentrations of Mn in the absence and presence of GSH.

Fig. S6 UV-vis spectra of the MnO_2/MoS_2 nanocomplex and $AS1411-MnO_2/MoS_2$ nanoprobe.

Fig. S7 T_1 MR signal changes of tumor and muscle post-injection of MnO₂/MoS₂ nanocomplex (A) and AS1411-MnO₂/MoS₂ nanoprobe (B) with the time passing by.