Electronic Supplementary Information

Investigating C=C positions and hydroxylation sites in lipids using Paternò-Büchi functionalization mass spectrometry

Patrick Esch^a and Sven Heiles^{a*}

^a Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany

*Address correspondence to Dr. Sven Heiles: Institute of Inorganic and Analytical Chemistry Justus Liebig University Giessen Heinrich Buff Ring 17 35392 Giessen, Germany Phone: +49 641 99 34807 e-mail: <u>sven.heiles@anorg.chemie.uni-giessen.de</u>

Figure S1. Overview spectrum of a solution containing 1 μ M/L TG (LnLnLn), 1 μ M/L TG (LLL) and 10 μ M/L 3-acpy in MeOH and 1% formic acid after UV irradiation.

Figure S2. Overview spectra of a MeOH solution containing 1 mM/L 3-acpy and 1 μ M/L (**A**) FA 18:1, FA 18:2 as well as (**B**) TG (OOO), TG (LLL) and TG (LnLnLn). (**A**) Overview mass spectrum of fatty acids after PB reactions. The unfunctionalized [FA + H]⁺-ions were not detected and the mass shift of +121.05 Da is indicated with respect to hypothetical [FA + H]⁺-ions. (**B**) Overview mass spectrum of TGs after PB reactions.

Figure S3. Microscopic image of a nanoESI emitter tip with an inner diameter of about 1.8 μ m.

Figure S5. Experimental setup for PB functionalization experiments. The UV lamp is brass shielded and placed above the nESI capillary, which is mounted on a movable xyz-stage

Figure S6. (A) CID-MS² and (B) HCD-MS² spectra of PB-functionalized linoleic acid (FA 18:2 *n*-6, *n*-9).

Figure S7. **(A)** CID-MS² spectrum of functionalized FA 18:2 *n*-7, *n*-9. **(B)** CID-MS² spectrum of functionalized FA 18:2 *n*-6, *n*-8.

Figure S8. CID-MS² spectrum of PB-functionalized 8-HETE.

Figure S9. MS² spectrum of PB-functionalized linoleic acid standard oxidized under ambient conditions for 69 h. ω -ions for *n*-6, *n*-7, *n*-8 and *n*-9 were detected as well as their corresponding oxidized form.

Figure S10. Signal intensity of protonated TG (18:2/18:2/18:2) relative to the protonated TG (16:0/16:0) signal as a function of UV irradiation time.

Figure S11. PB MS/MS spectrum of TG (OOO) with m/z 1006.8.

Figure S12. PB MS/MS spectrum of TG (LLL) with *m*/z 1000.80.

Figure S13. Time-dependent relative abundance of mono-, di- and tri-oxidized TG (LLL) species. Lines are second-degree polynomials and serve as guide to the eye.

Figure S14. Time-dependent relative abundance of mono-, di- and tri-oxidized FA 18:2 species. Lines are second-degree polynomials and serve as guide to the eye.

Figure S15. MS/MS spectrum of $[PLP + O + Na]^+$ with m/z 869.

Figure S16. MS/MS spectrum of $[PLP + 2O + Na]^+$ with m/z 885.

Figure S17. PB MS/MS spectrum of TG (LnLnLn) with *m/z* 994.75.

Figure S18. PB MS/MS spectrum of TG (POP) with *m*/z 954.81.

Figure S19. (A) MS/MS spectrum of di-oxidized, non-functionalized [PLP + 2O + H]⁺. The neutral loss of FA 18:2 is shifted by 31.99 Da, indicating the addition of two oxygen atoms. **(B)** MS/MS of di-oxidized, functionalized PLP [PLP + 2O + 3-acpy + H]⁺.

Figure S20. Potential structures of oxidized PLP assuming that oxidation only takes place in allylic positions with respect to C=C bonds. "R" denotes the glycerol backbone containing two FA 16:0 moieties.

Figure S21. (A) CID-MS²-spectrum of PB-functionalized, monooxidized TG (LLL). (B) CID-MS³-spectrum of $[L + O + 3-acpy + H]^+$, liberated upon fragmentation of PB-functionalized, monooxidized TG (LLL).

Figure S22. (A) Overview mass spectrum of non-oxidized Sacha Inchi-oil. The signals from m/z 873.70 to 881.75 are attributed to [TG 54:9 + H]⁺ to [TG 54:4 + H]⁺. (B) Overview mass spectrum of Sacha Inchi-oil that was stored under ambient conditions for 139 h. The attachment of sodium can be observed causing the signals around m/z 897.70 (red arrow) and from these signals on, multiple additions of oxygen were detected, each causing a shift of 15.99 Da (blue arrows).

Figure S23. (A) Overview mass spectrum of non-oxidized linseed oil. The signals around m/z 873.70 are attributed to [TG 54:9 + H]⁺ to [TG 54:4 + H]⁺. (B) Overview mass spectrum of linseed oil that was stored under ambient conditions for 100 h. The attachment of sodium can be observed causing the signals around m/z 895.68 (red arrow) and from these signals on, multiple additions of oxygen were detected, each causing a shift of 15.99 Da (blue arrows).

Figure S24. (A) MS/MS spectrum of [TG 54:7 + O + H]⁺ from Sacha Inchi oil. **(B)** PB-MS/MS spectrum of [TG 54:7 + 3-acpy +H]⁺.

Figure S25. (A) MS/MS spectrum of $[TG 56:7 + O + H]^+$ from oxidized Sacha Inchi oil. The inset shows the signals attributed to neutral losses of oxidized and unoxidized FAs. (B) PB-MS/MS spectrum of $[TG 56:7 + O + 3-acpy + H]^+$. The insets show signals of the diagnostic $[\omega]$ -ions as well as neutral losses of the FAs. $[\alpha]$ -ions were not detected.

Table S1. List of theoretical m/z values obtained by PB-MS² of oxidized PLP. Black and blue m/z values were detected, whereas red m/z values were not detected. Light blue m/z values indicate retro-PB fragment ions diagnostic for PLP hydroxylation isomers shown in **Figure S17**. The sum of all $[\omega]$ -ions have a relative intensity of 99.5%, whereas $[\alpha]$ -ions have a summed relative intensity of 0.5%.

Oxidation site	[α]	m/z	∆/ppm	[ω]	m/z	∆/ppm
n-11	<i>n</i> -6/1 + 0	868.70	+ 1.9	n-6/0	190.16	+ 1.8
	<i>n-</i> 9/0 + 0	828.67	-	n-9/1	230.19	+ 2.0
<i>n</i> -10	<i>n-</i> 6/1 + 0	868.70	+ 1.9	n-6/0	190.16	+ 1.8
	<i>n-</i> 8/0 + 0	842.69	-	n-8/1	216.18	+ 2.2
n-9	<i>n-6/1</i> + 0	868.70	+ 1.9	n-6/0	190.16	+ 1.8
	n-10/0	798.66	-	<i>n</i> -10/1 + 0	260.20	+ 1.9
<i>n-</i> 8	<i>n-</i> 6/1 + 0	868.70	+ 1.9	n-6/0	190.16	+ 1.8
	n-9/0	812.67	+ 1.8	<i>n</i> -9/1 + 0	246.19	+ 2.5
n-7	<i>n-</i> 5/1 + 0	882.70	-	n-5/0	176.14	+ 1.3
	n-9/0	812.67	+ 1.8	<i>n</i> -9/1 + 0	246.19	+ 2.5
<i>n</i> -6	n-7/1	838.69	-	<i>n</i> -7/0 + 0	220.17	+ 2.1
	n-9/0	812.67	+ 1.8	<i>n</i> -9/1 + 0	246.19	+ 2.5
<i>n</i> -5	n-6/1	852.71	+ 1.7	<i>n</i> -6/0 + 0	206.15	+ 2.0
	n-9/0	812.67	+ 1.8	<i>n-</i> 9/1 + 0	246.19	+ 2.5

Free and there a		Experimental mass	Exact mass	A / 100000	
Fragment type	Sum Formula	/ m/z	/ m/z	n/z	
[<i>ω n</i> -3/0]	C ₁₀ H ₁₄ N ⁺	148.1120	148.1121	- 0.7	
[<i>ω n</i> -4/0]	$C_{11}H_{16}N^+$	162.1278	162.1277	+ 0.6	
[<i>ω n</i> -5/0]	$C_{12}H_{18}N^+$	176.1435	176.1434	+ 0.6	
[<i>ω n-</i> 6/0]	$C_{13}H_{20}N^+$	190.1589	190.1590	- 0.5	
[ω n-7/0]	$C_{14}H_{22}N^+$	204.1741	204.1747	- 2.9	
[<i>ω n-</i> 8/0]	$C_{15H_{24}N^+}$	218.1896	218.1903	- 3.2	
[<i>ω n-</i> 9/0]	$C_{16}H_{26}N^+$	232.2056	232.206	- 1.7	
[<i>ω n</i> -3/0 + O]	C ₁₀ H ₁₄ NO ⁺	164.1070	164.1070	± 0.0	
[<i>ω n</i> -4/0 + O]	$C_{11}H_{16}NO^+$	178.1228	178.1226	+ 1.1	
[<i>ω n-</i> 5/0 + O]	$C_{12}H_{18}NO^+$	192.1377	192.1383	- 3.1	
[<i>ω n-</i> 6/0 + O]	$C_{13}H_{20}NO^+$	206.1533	206.1539	- 2.9	
[<i>ω n</i> -7/0 + O]	$C_{14}H_{22}NO^+$	220.1688	220.1696	- 3.6	
[<i>ω n-</i> 8/0 + O]	$C_{15}H_{24}NO^+$	234.1845	234.1852	- 3.0	
[<i>ω n-</i> 9/0 + O]	$C_{16}H_{26}NO^+$	248.2001	248.2009	- 3.2	
[<i>ω n</i> -10/0 + O]	C ₁₇ H ₂₈ NO ⁺	262.2159	262.2165	- 2.3	
[ω n-3/1]	$C_{10}H_{12}N^+$	146.0967	146.0964	+2.1	
[ω n-4/1]	$C_{11}H_{14}N^{+}$	160.1122	160.1121	+ 0.6	
[ω n-5/1]	$C_{12}H_{16}N^{+}$	174.1272	174.1277	- 2.9	
[ω n-6/1]	$C_{13}H_{18}N^{+}$	188.1433	188.1434	- 0.5	
[ω n-7/1]	$C_{14}H_{20}N^{+}$	202.1583	202.1590	- 3.5	
[ω n-8/1]	$C_{15}H_{22}N^{+}$	216.174	216.1747	- 3.2	
[ω n-9/1]	$C_{16}H_{24}N^{+}$	230.1902	230.1903	- 0.4	
[ω n-10/1]	$C_{17}H_{26}N^{+}$	244.2051	244.2060	- 3.7	
[<i>ω n</i> -3/1 + 0]	$C_{10}H_{12}NO^+$	162.0915	162.0913	+ 1.2	
[<i>ω n</i> -4/1 + 0]	$C_{11}H_{14}NO^+$	176.1071	176.1070	+ 0.6	
[<i>ω n</i> -5/1 + 0]	$C_{12}H_{16}NO^+$	190.1224	190.1226	- 1.1	
[<i>ω n-</i> 6/1 + 0]	$C_{13}H_{18}NO^+$	204.1377	204.1383	- 2.9	
[<i>ω n</i> -7/1 + O]	$C_{14}H_{20}NO^+$	218.1533	218.1539	- 2.8	
[<i>ω n</i> -8/1 + O]	$C_{15}H_{22}NO^+$	232.1689	232.1696	- 3.0	
[<i>ω n</i> -9/1 + O]	$C_{16}H_{24}NO^+$	246.1845	246.1852	- 2.8	
[<i>ω n</i> -10/1 + O]	$C_{17}H_{26}NO^+$	260.2000	260.2009	- 3.5	

Table S2. Experimental and theoretical m/z values for fragments found in the PB-MS/MS spectrum of [TG 54:7 + O + 3-acpy + H]⁺ from Sacha Inchi oil.

Erogmont type	Sum Formula	Experimental mass	Exact mass	A / nnm
Flagment type	Sum Formula	/ m/z	/ m/z	
[α n-3/6]	C ₆₁ H ₉₈ NO ₇ +	956.7365	956.7338	+ 2.8
[α n-4/6]	C ₆₀ H ₉₆ NO ₇ ⁺	942.7142	942.7181	- 4.1
[α n-5/6]	$C_{59}H_{94}NO_7^+$	928.7030	928.7025	+ 0.5
[α n-6/6]	$C_{58}H_{92}NO_7^+$	914.6877	914.6868	+ 1.0
[α n-7/6]	C ₅₇ H ₉₀ NO ₇ ⁺	900.6711	900.6712	- 0.1
[α n-8/6]	$C_{56}H_{88}NO_7^+$	886.6556	886.6555	+ 0.1
[α n-9/6]	$C_{55}H_{86}NO_7^+$	872.6404	872.6399	+ 0.6
[α n-10/6]	$C_{54}H_{84}NO_{7}^{+}$	858.6236	858.6242	- 0.7
[<i>α n</i> -3/6 + 0]	$C_{61}H_{98}NO_8^+$	972.7288	972.7287	+ 0.1
[α n-4/6 + O]	C ₆₀ H ₉₆ NO ₈ ⁺	958.7121	958.7130	- 0.9
[α n-5/6 + O]	$C_{59}H_{94}NO_8^+$	944.6980	944.6974	+ 0.6
[α n-6/6 + O]	C ₅₈ H ₉₂ NO ₈ ⁺	930.6827	930.6817	+ 1.1
[α n-7/6 + O]	C ₅₇ H ₉₀ NO ₈ ⁺	916.6655	916.6661	- 0.7
[α n-8/6 + O]	C ₅₆ H ₈₈ NO ₈ ⁺	902.6508	902.6504	+ 0.4
[<i>α n-</i> 9/6 + O]	C ₅₅ H ₈₆ NO ₈ ⁺	888.6360	888.6348	+ 1.4
[<i>α n</i> -10/6 + O]	$C_{54}H_{84}NO_{8}^{+}$	874.6179	874.6191	- 1.4
[α n-3/5]	$C_{61}H_{100}NO_{7}^{+}$	958.7524	958.7494	+ 3.1
[α n-4/5]	$C_{60}H_{98}NO_{7}^{+}$	944.7358	944.7338	+ 2.1
[α n-5/5]	$C_{59}H_{96}NO_7^+$	-	930.7181	-
[α n-6/5]	$C_{58}H_{94}NO_{7}^{+}$	916.7040	916.7025	+ 1.6
[α n-7/5]	$C_{57}H_{92}NO_{7}^{+}$	-	902.6868	-
[α n-8/5]	C ₅₆ H ₉₀ NO ₇ ⁺	888.6719	888.6712	+ 0.8
[α n-9/5]	C ₅₅ H ₈₈ NO ₇ ⁺	874.6564	874.6555	+ 1.0
[<i>α n</i> -10/5]	$C_{54}H_{86}NO_{7}^{+}$	860.6400	860.6399	+ 0.1