Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020

CONFIDENTIAL

Supplementary figure 1: Averaged FTIR spectra of tissue-engineered skin with variable thicknesses (2-25 μ m). 10-um thick tissue section (green) is shown to be the optimal thickness to avoid nonlinear detector response or saturation that may be associated with higher absorbance intensities (> 20- μ m) seen in thicker tissue sections. Thinner tissue sections (< 5- μ m), given lower absorbance intensities, were also excluded to optimize the signal to noise ratio.

Supplementary Figure 2: Absorbance intensities FTIR spectra variability recorded from the generated tissue-engineered skins.

A) Overlay FTIR spectra from different tissue-engineered skins. B) Second derivative FTIR spectra calculated from the upper panel (A).

Supplementary Figure 3: Increased cytoplasmic aggregated TDP-43 with antiparallel β-sheet structures in ALS-derived TES quantified by ELISA.

For each sample, the amount of TDP-43 was normalised over the total protein content of the fraction and the ratio of the nuclear fraction over the cytoplasm fraction was calculated. A smaller nuclear to cytoplasm ratio indicates TDP-43 delocalization from the nucleus to the cytoplasm, a well-known pathological signature of ALS. Data is reported as mean \pm SEM. Statistically significant smaller nuclear to cytoplasm ration can be observed in ALS-derived TES as expected (one tailed Mann-Whitney, p = 0,0333).

Supplementary Table 1: Parameters of the different absorbance filters used for spectra filtering and their purpose

Region	Minimum	Maximum	Purpose
cm ⁻¹	abs.	abs.	
	Au.	Au	
1700-1600	0,2	0,9	To remove the spectra from regions within the
(Amide I)			TES that are too thin (< 0.1 Au) or too thick
			(>0.9 Au)
1780-1730	0,0	0,1	To remove spectra associated with the presence
			of OCT.