

Supplementary figure 1: Averaged FTIR spectra of tissue-engineered skin with variable thicknesses (2-25 $\boldsymbol{\mu m}$). 10-um thick tissue section (green) is shown to be the optimal thickness to avoid nonlinear detector response or saturation that may be associated with higher absorbance intensities ($>20-\mu \mathrm{m}$) seen in thicker tissue sections. Thinner tissue sections ($<5-\mu \mathrm{m}$), given lower absorbance intensities, were also excluded to optimize the signal to noise ratio.

Supplementary Figure 2: Absorbance intensities FTIR spectra variability recorded from the generated tissue-engineered skins.
A) Overlay FTIR spectra from different tissue-engineered skins. B) Second derivative FTIR spectra calculated from the upper panel (A).

Supplementary Figure 3: Increased cytoplasmic aggregated TDP-43 with antiparallel $\boldsymbol{\beta}$-sheet structures in ALS-derived TES quantified by ELISA.

For each sample, the amount of TDP-43 was normalised over the total protein content of the fraction and the ratio of the nuclear fraction over the cytoplasm fraction was calculated. A smaller nuclear to cytoplasm ratio indicates TDP-43 delocalization from the nucleus to the cytoplasm, a well-known pathological signature of ALS. Data is reported as mean \pm SEM. Statistically significant smaller nuclear to cytoplasm ration can be observed in ALS-derived TES as expected (one tailed Mann-Whitney, $\mathrm{p}=0,0333$).

Supplementary Table 1: Parameters of the different absorbance filters used for spectra filtering and their purpose

Region cm^{-1}	Minimum abs. Au.	Maximum abs. Au	Purpose
$1700-1600$	0,2	0,9	To remove the spectra from regions within the TES that are too thin $(<0.1 \mathrm{Au})$ or too thick $(>0.9 \mathrm{Au})$
$1780-1730$	0,0	0,1	To remove spectra associated with the presence of OCT.

