Supporting Information

Simultaneous Detection of Site-Specific Histone Methylations and Acetylation Assisted by Single Template Oriented Molecularly Imprinted Polymers

Tianqi Zhang ${ }^{\text {a }}$, Wen Zhang ${ }^{\text {a }}$, Liang Liu ${ }^{\text {a }}$, Yun Chen* ${ }^{\text {a,b }}$
${ }^{a}$ Nanjing Medical University, Nanjing, 211166, China
${ }^{\mathrm{b}}$ State Key Laboratory of Reproductive Medicine, 210029, China

Experimental

Chemicals and Reagents.

Unmethylated peptide EIAQDFK, methylated peptides (i.e., EIAQDFK ${ }_{\text {mel }}$ TDLR, EIAQDFK ${ }_{\mathrm{me} 2}$ TDLR, EIAQDFK ${ }_{\mathrm{me} 3}$ TDLR), and acetylated peptide EIAQDFK $_{\mathrm{ac}}$ TDLR as well as the stable isotope-labeled internal standard were developed by ChinaPeptides Co., Ltd. (Shanghai, China). Purity of the peptides is over 95% provided by the manufacturer. Tetraethoxysilane (TEOS), methylmethacrylate (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2'-azobis(2-methylpropionitrile) (AIBN) were all obtained from Aladdin Chemistry Co. Ltd. (Shanghai, China). (3-Aminopropyl)triethoxysilane (APTES) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Glutaraldehyde (GA) was obtained from Aladdin Chemistry Co., Ltd. (Shanghai, China). Toluene and dimethylformamide (DMF) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Ammonium bicarbonate $\left(\mathrm{NH}_{4} \mathrm{HCO}_{3}\right)$ was provided by Qiangshun Chemical Reagent Co., Ltd. (Shanghai, China). DL-dithiothreitol (DTT) and iodoacetamide (IAA) were both purchased from Sigma-Aldrich (St. Louis, MO, USA). Sequencing grade modified trypsin was obtained from Promega (Madison, WI, USA). Phosphate buffered saline (PBS) was provided by the Beyotime Institute of Biotechnology (Jiangsu, China). Methanol and acetonitrile (ACN) were supplied by Tedia Company, Inc. (Fairfield, OH, USA). Trifluoroacetic acid (TFA) and oxalic acid were provided by Aladdin Chemistry Co., Ltd. (Shanghai, China), and formic acid (FA) was purchased from Xilong Chemical Industrial Factory Co., Ltd. (Shantou,

China). Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and acetone were supplied by Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China). Dulbecco's Modified Eagle Media (DMEM), Roswell Park Memorial Institute (RPMI) 1640 medium, Leibovitz's L-15 medium and penicillin-streptomycin solution were obtained from Thermo Scientific HyClone (Logan, UT, USA). MEGM mammary epithelial cell growth medium was ordered from LONZA (Basel, Switzerland). Fetal bovine serum (FBS) was purchased from the Thermo Scientific HyClone \& Gibco (Logan, UT). Trypan blue and sodium dodecyl sulfate (SDS) were supplied by Generay Biotech Co., Ltd. (Shanghai, China). Water was purified and deionized with a Milli-Q system manufactured by Millipore (Bedford, MA, USA).

Cell Culture.

MCF-7/WT (ATCC, Manassas, VA) cells were cultured in a DMEM media supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. MCF-7/ADR (Keygen Biotech, Nanjing, China) cells were cultured in RPMI 1640 media (with L-glutamine and sodium pyruvate) supplemented with 10% fetal bovine serum. MDA-MB-231 cells were obtained from the Cell Resource Center of Chinese Academy of Medical Sciences (Shanghai, China) and cultured in L- 15 supplemented with $10 \% \mathrm{FBS}$ and 1% penicillin/streptomycin at $37^{\circ} \mathrm{C}$ in a free gas exchange with atmospheric air, as instructed by the ATCC. ${ }^{1}$ MCF-10A cells (ATCC, Manassas, VA) were non-tumorigenic breast epithelial cells and maintained routinely in MEGM media supplemented with $100 \mathrm{ng} / \mathrm{mL}$ cholera toxin and 1% penicillin/streptomycin at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. The cells were
split every 5-7 days by lifting cells with 0.25% trypsin, and feeding between splits was accomplished through the addition of fresh medium. To maintain a highly drugresistant cell population, MCF-7/ADR cells were periodically reselected by growing them in the presence of $1000 \mathrm{ng} / \mathrm{mL}$ DOX. Experiments were performed using the cells cultured without DOX for 48 h . Cells were counted using a Scepter ${ }^{\text {TM }} 2.0$ handheld, automated Cell Counter (Millipore, Billerica, MA, USA). Cell viability was assessed by trypan blue (0.4%) exclusion, which was completed by mixing the cell suspension, trypan blue and $1 \times \mathrm{PBS}$ in a 2:5:3 ratio and counting the percentage of viable cells following a 5 min incubation at $37^{\circ} \mathrm{C}$.

Preparation of Stock Solutions, Calibration Standards and Quality Controls

 (QCs).Stock solutions (1 mM) of five surrogate peptides were first prepared by accurately weighing the unmethylated, monomethylated, dimethylated, trimethylated and acetylated synthetic peptides and dissolving them in deionized water. The solutions were stored at $-20^{\circ} \mathrm{C}$ in amber glass tubes to protect them from light. The corresponding isotope-labeled synthetic peptides were used as internal standards (IS). The internal standards were also weighed, and 1 mM stock solutions were prepared in deionized water. Finally, a 100 nM internal standard solution containing all the internal standards was prepared by diluting the stock solutions with an ACN/water mixture ($50: 50, v / v$) containing 0.1% FA.

The calibration standards of the surrogate peptides were prepared by sequentially diluting the stock solutions with H3 \& H4-depleted cell extract. The experimental
details about immuno-depletion of cellular extract have been described in our previous work. ${ }^{2}$ The concentrations of the standards were $0.5,5,10,50,100,200$, and 400 nM for each peptide in a mixture. Correspondingly, the QC samples for lower limit of quantification (LLOQ), low QC, mid QC, and high QC were prepared at 0.5, $1.5,50$, and 320 nM in the same matrix and frozen prior to use. Especially, all the solutions in following tests were prepared using H3 \& H4-depleted cell extract if the condition was not defined.

Histone Protein Extraction.

Most of the available methods to extract histone depend on the good solubility of histone proteins in acidic solutions, where most other proteins in nuclear and nucleic acids would precipitate. ${ }^{3}$ Briefly, cells $\left(\sim 10^{6}\right)$ were rinsed with ice-cold PBS twice and pelleted at $1,480 \times \mathrm{g}$ for 10 min , followed by resuspending in 2 mL of precooled lysis buffer (50 mM sodium bisulfite, 10 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \%$ Triton X-100, and 8.6% sucrose, $\mathrm{pH}=6.5$) containing one protease inhibitor cocktail (SigmaAldrich, MO). Followed by dounce homogenization, the samples were centrifuged at $1,000 \times \mathrm{g}$ for 7 min . Next, the pellet was suspended in 0.4 mL of $0.4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and underwent gentle shaking to isolate the histone proteins at $4^{\circ} \mathrm{C}$ overnight. ${ }^{4}$ Then, the supernatant was collected by centrifugation at $12,000 \times \mathrm{g}$ for 10 min and subsequently mixed with 1 mL of acetone. The sample was incubated for 12 h at $-20^{\circ} \mathrm{C}$, and the coagulated proteins were gathered by spun at $15,000 \times \mathrm{g}$ for 10 min and air-dried. Finally, the gained histone proteins were dissolved in $100 \mu \mathrm{~L}$ of water and preserved at $-20^{\circ} \mathrm{C}$. The concentration of the extracted protein was determined using a BCA
protein assay kit (Pierce Biotechnology, Inc., Rockford, IL, USA).

Characterization of the MIPs.

FT-IR analysis The composition of the particles was characterized using a FT-IR Tensor 27 spectrometer (Bruker, Germany) coupled with a liquid nitrogen-cooled mercury-cadmium-telluride detector (MCT), which had a resolution of $2 \mathrm{~cm}^{-1}$ and a spectral range of $4000-400 \mathrm{~cm}^{-1}$. The particles were dried at $80^{\circ} \mathrm{C}$ for 12 h under vacuum prior to prepare the KBr pellet. In this context, a quantity of 2 mg of each sample was thoroughly ground with 100 mg of KBr for following pellet fabrication.

Evaluation of morphology and structure of the MIPs and the NIPs Morphology of the SiO_{2}-NPs and the MIPs were characterized with field emission scanning electron microscope (FE-SEM) (Carl Zeiss, Sigma 500, Germany). All of the samples were coated with gold with a thickness of 2-3 nm for ease of conduction. Transmission electron microscope (TEM; Tecnai G2 Spirit BioTwin, FEI, USA) was employed to examine the internal structure of these particles. The particles were suspended in distilled water at a suitable concentration and added to 300 mesh carbon coated copper grid, and then dried under vacuum.

Adsorption tests The static adsorption experiments were conducted to investigate the adsorption capacity of the MIPs. Solutions of the template peptide and surrogate peptides with different concentrations were prepared. Then, 20 mg of MIPs or NIPs were dispersed in 1 mL of each sample. After incubation with gentle shaking for 24 h at room temperature, the mixtures were centrifuged for 10 min at $10,000 \mathrm{rpm}$. Then, the supernatant was preserved and the separated particles were treated with $200 \mu \mathrm{~L}$ of
methanol containing 10% FA to elute the adsorbed peptides. The collected supernatant after centrifugation was further determined by LC-MS/MS. The adsorption kinetics experiment was carried out using the same procedure mentioned above, while controlling the initial concentration at $1 \mu \mathrm{M}$ and the adsorption time ranging from 0 to 60 min .

Selectivity test and competitive binding test To further determine the selectivity of the MIPs in oriented recognition, a competing peptide was selected. In addition, a series of mixed solutions consisting of one surrogate peptide with variable designated concentrations ranging from 0.5 to 400 nM and the other surrogate peptides at a constant high concentration (400 nM) were prepared. Moreover, five samples (S 1 to S5) comprising five surrogate peptides with given concentrations randomly between 10 and 400 nM were also measured.

Immuno-Depletion of Cellular Extract.

Cellular extract was added at protein concentrations of $2.00 \mathrm{mg} / \mathrm{mL}$ to BioMagPlus Goat anti-rabbit IgG beads (Bangs Laboratories, Fisher, Indiana, USA) that had been pre-incubated with a rabbit polyclonal anti-H3 antibody (17168-1-AP, Proteintech Group, Inc., China) and anti-H3 antibody (16047-1-AP, Proteintech Group, Inc., China). Samples were incubated at $4^{\circ} \mathrm{C}$ for 60 min with gentle rotation, and then placed in a magnetic field (Magnetic separator; Bangs Laboratories, Fishers, Indiana, USA) for 2 min . Supernatants were collected and subjected to the depletion protocol a second time.

Instruments and Conditions.

For global proteomics analysis, unlabeled peptides were first fractionated by strong cation exchange (SCX) and then analyzed by LC-MS/MS. The SCX chromatography was performed on BioBasix SCX $150 \mathrm{~mm} \times 3 \mathrm{~mm}, 5 \mu \mathrm{~m}, 300 \AA$ column (Thermo, USA) with a flow rate of $0.3 \mathrm{~mL} / \mathrm{min} .200 \mu \mathrm{~g}$ of tryptic peptides were loaded on the column and eluted with buffer $\mathrm{A}\left(5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}: 25 \% \mathrm{ACN}, \mathrm{pH}\right.$ $=2.7)$ and buffer $\mathrm{B}\left(5 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}, 350 \mathrm{mM} \mathrm{KCl}: 25 \% \mathrm{ACN}, \mathrm{pH}=2.7\right)$ in following gradient: B $0 \%(0 \mathrm{~min}) \rightarrow 0 \%(5 \mathrm{~min}) \rightarrow 60 \%(65 \mathrm{~min}) \rightarrow 100 \%(70 \mathrm{~min}) \rightarrow 100 \%$ $(80 \mathrm{~min}) \rightarrow 0 \%(90 \mathrm{~min})$. The eluting fractions were collected from $0-25 \mathrm{~min}, 25-30$ $\mathrm{min}, 30-34 \mathrm{~min}$, then every 3 min intervals to $67 \mathrm{~min}, 67-85 \mathrm{~min}(15 \mathrm{in}$ total). The fractions were lyophilized and stored at $-80^{\circ} \mathrm{C}$ for further analysis. In LC-MS/MS, the peptide samples were separated using the Eksigent Ekspert ${ }^{\text {TM }}$ nanoLC 415 System combined with the cHiPLC® system in Trap-Elute mode. The peptides were first loaded on the cHiPLC trap $(150 \mu \mathrm{~m} \times 300 \mu \mathrm{~m}$ ChromXP C18-CL, $3 \mu \mathrm{~m}, 120 \AA$) and washed for 10 min at $2 \mu \mathrm{~L} / \mathrm{min}$ and eluted using a nano cHiPLC column $(75 \mu \mathrm{~m} \times 15$ cm ChromXP C18-CL, $3 \mu \mathrm{~m}, 120 \AA$) in a 90 min linear gradient from $3-35 \%$ acetonitrile in water with 0.1% formic acid $(\mathrm{v} / \mathrm{v})$ at $300 \mathrm{~nL} / \mathrm{min}$. The eluting peptides were analyzed on a TripleTOF® 5600+ system (Sciex, Framingham, MA) equipped with a Nanospray-III® Source. MS1 spectra were collected in the range $350-1250 \mathrm{Da}$ for 250 ms . The 20 most intense precursor ions in the mass range of $400-1250 \mathrm{Da}$ with a charge state $2-5$ were selected for fragmentation with a rolling collision energy and a collision energy spread of $\pm 15 \mathrm{~V}$, and MS/MS fragment spectra were collected in the range of $100-1500 \mathrm{Da}$ for 50 ms . The data extraction of the SWATH runs was
performed by PeakView using the MS/MSALL with SWATH Acquisition MicroApp. Six fragments per peptide were selected and any shared peptides were excluded from the extraction. Protein quantification was employed the peptides with an FDR of less than 5%. The peak areas for peptides were obtained by summing the peak areas of the corresponding fragment ions.

For a simultaneous targeted analysis of five surrogate peptides, an Agilent Series 1290 UPLC system (Agilent Technologies, Waldbronn, Germany) coupled with a 6460 Triple Quad LC/MS mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) were used. Chromatographic separation of the sample was performed on an Agilent SB-C18 column ($2.1 \mathrm{~mm} \times 30 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$) at room temperature. The mobile phase was consisted of solvent A ($0.1 \% \mathrm{FA} /$ water $)$ and solvent B ($0.1 \% \mathrm{FA} /$ methanol $)$. A gradient elution with a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$ was performed in the following conditions: B $10 \%(0 \mathrm{~min}) \rightarrow 10 \%(1 \mathrm{~min}) \rightarrow 90 \%(4 \mathrm{~min}) \rightarrow 90 \%(8 \mathrm{~min}) \rightarrow 10 \%$ (9 min). The injection volume was $5 \mu \mathrm{~L}$. The mass spectrometer was equipped with an electrospray ion source and operated in the positive MRM mode. Q1 and Q3 were both set at unit mass resolution. The flow of the drying gas was $10 \mathrm{~L} / \mathrm{min}$, and the drying gas temperature was kept at $350^{\circ} \mathrm{C}$. The electrospray capillary voltage was optimized to 4000 V . The nebulizer pressure was set to 35 psi . The data were collected and processed using the Agilent MassHunter Workstation Software (version B.06.00). The peptides were detected in MRM mode. In this study, three transitions that gave the best S / N (signal/noise) and LOQ (limit of quantification) were chosen for each surrogate peptide.

Supplementary Tables and Figures

Table S1. MRM transitions for the surrogate peptides of H3K79, H3K122, H4K31 and their corresponding internal standard peptides.

H3K79 Surrogate Peptides	MRM Transitions (m / z)		
74EIAQDFK80 (unmethylated)	$425.8 \rightarrow 294.0$	$425.8 \rightarrow 408.9$	$425.8 \rightarrow 608.2$
EIAQDF*K (IS)	$430.8 \rightarrow 304.4$	$430.8 \rightarrow 418.6$	$430.8 \rightarrow 618.2$
	$450.6 \rightarrow 397.2$	$450.6 \rightarrow 454.7$	$450.6 \rightarrow 554.3$
EIAQDF ${ }^{*} \mathrm{~K}_{\text {me1 }}$ TDLR * (IS)	$457.3 \rightarrow 407.1$	$457.3 \rightarrow 464.7$	$457.3 \rightarrow 564.5$
74EIAQDFK ${ }_{\text {me2 }}$ TDLR84 (dimethylated)	$455.4 \rightarrow 404.3$	$455.4 \rightarrow 461.9$	$455.4 \rightarrow 561.4$
EIAQDF ${ }^{*} \mathrm{~K}_{\text {me2 }}$ TDLR * (IS)	$462.3 \rightarrow 414.5$	$462.3 \rightarrow 472.3$	$462.3 \rightarrow 571.6$
74EIAQDFK ${ }_{\text {me }}{ }^{\text {TDLR84 }}$ (trimethylated)	$460.0 \rightarrow 468.8$	$460.0 \rightarrow 532.7$	$460.0 \rightarrow 568.3$
	$466.8 \rightarrow 478.9$	$466.8 \rightarrow 543.1$	$466.8 \rightarrow 578.6$
74EIAQDFK ${ }_{\text {ac }}$ TDLR84 (acetylated)	$689.5 \rightarrow 126.0$	$689.5 \rightarrow 674.3$	$689.5 \rightarrow 936.3$
EIAQDF * $\mathrm{abc}^{\text {T }}$ (DLR* (IS)	$699.7 \rightarrow 126.0$	$699.7 \rightarrow 694.3$	$699.7 \rightarrow 956.5$

${ }^{*}$ Stable isotope-labeled amino acids $\left[{ }^{13} \mathrm{C}_{9},{ }^{15} \mathrm{~N}\right]$ Phe and $\left[{ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}_{4}\right]$ Arg.

H3K122 Surrogate Peptides	MRM Transitions (m / \mathbf{z})		
116VTIMPK123 (unmethylated)	$344.9 \rightarrow 375.2$	$344.9 \rightarrow 488.2$	$344.9 \rightarrow 589.5$
VTI* MPK (IS)	$349.7 \rightarrow 375.2$	$349.7 \rightarrow 498.3$	$349.7 \rightarrow 599.3$
116VTIMPK ${ }_{\text {me }}{ }^{\text {DIQLAR127 }}$ (monomethylated)	$467.0 \rightarrow 477.6$	$467.0 \rightarrow 599.6$. 2
VTI* MPK ${ }_{\text {me } 1 \text { DIQLAR* }}$ (IS)	$473.8 \rightarrow 482.7$	$473.8 \rightarrow 609.8$	$8 \rightarrow 660.4$
116VTIMPK ${ }_{\text {me2 }}$ DIQLAR127(d $^{\text {d }}$	$471.8 \rightarrow 484.5$	$471.8 \rightarrow 606.8$	$471.8 \rightarrow 657.3$
VTI* MPK $_{\text {me2 }}$ DIQLAR * (IS)	$478.4 \rightarrow 489.6$	$478.4 \rightarrow 616.7$	$478.4 \rightarrow 667.4$
116VTIMPK ${ }_{\text {me } 3}$ DIQLAR127 (trimethylated) $^{\text {(}}$	$476.6 \rightarrow 491.3$	$476.6 \rightarrow 613.9$	$476.6 \rightarrow 664.4$
VTI* MPK ${ }_{\text {me } 3}$ DIQLAR * (IS)	$483.1 \rightarrow 496.5$	$483.1 \rightarrow 623.7$	$483.1 \rightarrow 674.4$
116VTIMPK ${ }_{\text {ac }}$ DIQLAR127(acetylated)	$714.1 \rightarrow 126.0$	$714.1 \rightarrow 600.4$	$714.1 \rightarrow 885.5$
VTI* MPK ${ }_{\text {ac }}$ DIQLAR * (IS)	$724.3 \rightarrow 126.0$	$724.3 \rightarrow 610.3$	$724.3 \rightarrow 895.5$

* Stable isotope-labeled amino acids $\left[\mathrm{D}_{10}\right]$ Ile and $\left[{ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}_{4}\right]$ Arg.

H4K31 Surrogate Peptides	MRM Transitions (m/z)		
23DNIQGITKPAIR36 (unmethylated)	$442.5 \rightarrow 456.2$	$442.5 \rightarrow 584.8$	$442.5 \rightarrow 685.4$
DNIQGI* TKPAIR* (IS)	$449.6 \rightarrow 466.3$	$449.6 \rightarrow 594.4$	$449.6 \rightarrow 695.3$
23DNIQGITK ${ }_{\text {me } 1 \text { PAIR36 }}$ (monomethylated)	$447.3 \rightarrow 435.2$	$447.3 \rightarrow 499.0$	$447.3 \rightarrow 555.6$
DNIQGI* TK $_{\text {me } 1}$ PAIR* $^{*}(\mathrm{IS})$	$454.2 \rightarrow 445.3$	$454.2 \rightarrow 509.2$	$454.2 \rightarrow 565.7$
23DNIQGITK me2 ${ }^{\text {PAIR36 }}$ (dimethyl	$452.2 \rightarrow 442.3$	$452.2 \rightarrow 506.0$	$452.2 \rightarrow 561.5$
DNIQGI* KK $_{\text {me2 }}$ PAIR* ${ }^{\text {(IS) }}$	$458.8 \rightarrow 452.4$	$458.8 \rightarrow 516.2$	$458.8 \rightarrow 572.3$
23DNIQGITK ${ }_{\text {me } 3 \text { PAIR36 }}$ (trimethylated)	$456.9 \rightarrow 449.3$	$456.9 \rightarrow 513.1$	$456.9 \rightarrow 569.4$
DNIQGI* KK $_{\text {me } 3}$ PAIR* (IS)	$463.4 \rightarrow 459.2$	$463.4 \rightarrow 523.4$	$463.4 \rightarrow 579.6$
23DNIQGITK ${ }_{\text {ac }}$ PAIR36 (acetylated)	$684.5 \rightarrow 126.0$	$684.5 \rightarrow 626.3$	$684.5 \rightarrow 840.5$
DNIQGI* TK $_{\text {ac }}{ }^{\text {PAIR* }}$ (IS)	$694.8 \rightarrow 126.0$	$694.8 \rightarrow 636.4$	$694.8 \rightarrow 860.4$

[^0]Table S2. Digestion efficiency for the substrate peptides.

Substrate Peptides	Surrogate Peptides	Digestion Efficiency (\%)
VREIAQDFKTD	EIAQDFK	98.4
VREIAQDFK ${ }_{\text {me1 }}$ TDLRFQ	EIAQDFK $_{\text {me }}$ TDLR	87.3
VREIAQDFK ${ }_{\text {me2 }}$ TDLRFQ $^{\text {a }}$	EIAQDFK ${ }_{\text {me2 }}$ TDLR	96.6
VREIAQDFK ${ }_{\text {me }}{ }^{\text {T }}$ TDLRFQ	$E^{\text {EIAQDFK }}$ me3 ${ }^{\text {TDLR }}$	95.2
VREIAQDFK ${ }_{\text {ac }}$ TDLRFQ	EIAQDFK ${ }_{\text {ac }}$ TDLR	90.6

Table S3. Imprinting factors and cross-reactivity values of the MIPs for adsorption of the surrogate peptides of H3K79, H3K122 and H4K31.
(A)

Surrogate Peptides	Adsorption Amount ($\mu \mathrm{mol} / \mathrm{g}$)		IF	CR
	MIPs	NIPs		
EIAQDF (template)	0.91 ± 0.03	0.37 ± 0.03	2.43 ± 0.37	-
EIAQDFK	0.63 ± 0.02	0.29 ± 0.02	2.14 ± 0.22	0.93 ± 0.17
EIAQDFK $_{\text {me1 }}$ TDLR	0.56 ± 0.03	0.25 ± 0.04	2.21 ± 0.20	0.97 ± 0.16
EIAQDFK ${ }_{\text {me2 }}$ TDLR	0.54 ± 0.02	0.23 ± 0.03	2.36 ± 0.24	0.96 ± 0.10
EIAQDFK ${ }_{\text {me3 }}$ TDLR	0.48 ± 0.02	0.23 ± 0.02	2.10 ± 0.10	0.92 ± 0.10
EIAQDFK ${ }_{\text {ac }}$ TDLR	0.52 ± 0.03	0.25 ± 0.02	2.18 ± 0.30	0.95 ± 0.20
B)				
Surrogate Peptides	Adsorption Amount ($\mu \mathrm{mol} / \mathrm{g}$)		IF	CR
	MIPs	NIPs		
VTIMP (template)	0.96 ± 0.01	0.33 ± 0.03	2.93 ± 0.24	-
VTIMPK	0.70 ± 0.02	0.24 ± 0.01	2.89 ± 0.03	0.99 ± 0.08
VTIMPK ${ }_{\text {me } 1}$ DIQLAR	0.64 ± 0.01	0.23 ± 0.03	2.74 ± 0.43	0.94 ± 0.07
VTIMPK ${ }_{\text {me2 }}$ DIQLAR	0.60 ± 0.01	0.22 ± 0.03	2.71 ± 0.40	0.92 ± 0.04
VTIMPK ${ }_{\text {me } 3}$ DIQLAR	0.60 ± 0.02	0.22 ± 0.01	2.73 ± 0.12	0.93 ± 0.09
VTIMPK ${ }_{\text {ac }}$ DIQLAR	0.62 ± 0.04	0.22 ± 0.02	2.85 ± 0.06	0.97 ± 0.05
Surrogate Peptides	Adsorption	(($\mu \mathrm{mol} / \mathrm{g}$)	IF	CR
Surrogate Peptides	MIPs	NIPs		
DNIQGIT (template)	0.93 ± 0.03	0.34 ± 0.02	2.77 ± 0.09	-
DNIQGITKPAIR	0.67 ± 0.03	0.24 ± 0.04	2.77 ± 0.36	0.99 ± 0.09
DNIQGITK ${ }_{\text {me } 1 \text { PAIR }}$	0.62 ± 0.06	0.23 ± 0.01	2.69 ± 0.20	0.97 ± 0.04
DNIQGITK ${ }_{\text {me } 2}$ PAIR	0.59 ± 0.05	0.23 ± 0.01	2.59 ± 0.24	0.93 ± 0.07
DNIQGITK ${ }_{\text {me } 3}$ PAIR	0.60 ± 0.06	0.23 ± 0.02	2.65 ± 0.17	0.96 ± 0.06
DNIQGITK ${ }_{\text {ac }}$ PAIR	0.62 ± 0.07	0.23 ± 0.02	2.72 ± 0.19	0.98 ± 0.07

Table S4. Comparison of the slopes of the calibrations curves measured with (w) and without (w / o) other surrogate peptides at high concentration.

	Slope of Calibration Curve				
	H3K79	H3K79 me1	H3K79 me2	H3K79 me3	H3K79ac
w/o Other Surrogate Peptides $\left(\times 10^{-2}\right)$	4.66 ± 0.06	4.62 ± 0.08	4.44 ± 0.23	4.58 ± 0.06	4.52 ± 0.14
w Other Surrogate Peptides $\left(\times 10^{-2}\right)$	4.69 ± 0.17	4.59 ± 0.16	4.48 ± 0.11	4.55 ± 0.09	4.45 ± 0.02
p value*	0.810	0.811	0.764	0.702	0.427

* $\mathrm{p}<0.05$ is considered statistically different.

Table S5. Accuracy and precision for the QC samples. The precision and accuracy of this assay were estimated by QC samples of each target peptides at four concentrations in three validation runs. The intra- and inter-day precisions were expressed as the percent coefficient of variation (\%CV). The accuracy was estimated by comparing the calculated mean concentrations to their nominal values (\%bias). Both accuracy and precision were $\leq \pm 15 \%$ (LLOQ, $\leq \pm 20 \%$).

Nominal Concentration	$\mathbf{0 . 5 0 0} \mathbf{n M}$	$\mathbf{1 . 5 0} \mathbf{n M}$	$\mathbf{5 0 . 0} \mathbf{n M}$	$\mathbf{3 2 0} \mathbf{n M}$
EIAQDFK				
Mean	0.544	1.55	53	339
\%Bias	8.8	3.1	6.1	5.9
Intra-day Precision (\%CV)	4.2	3.1	4.1	1.6
Inter-day Precision (\%CV)	13.2	9	8.7	6.2

EIAQDFK me1 TDLR				
Mean	0.454	1.61	46.9	341
\%Bias	-9.2	7.3	-6.3	6.6
Intra-day Precision (\%CV)	10.4	7.6	7.6	3.3
Inter-day Precision (\%CV)	13.6	4.7	9.1	4.3

EIAQDFK me2 $^{\text {TDLR }}$				
Mean	0.56	1.44	45	311
\%Bias	11.9	-3.8	-10	-2.9
Intra-day Precision (\%CV)	5.3	3.2	2.7	1.4
Inter-day Precision (\%CV)	12.7	8	8.3	3.1

EIAQDFK me3 $^{\text {TDLR }}$				
Mean	0.524	1.43	54.1	315
\%Bias	4.7	-4.4	8.2	-1.4
Intra-day Precision (\%CV)	6.8	5.3	8.9	2.8
Inter-day Precision (\%CV)	13	6.9	6.1	3.7

EIAQDFK $\mathbf{a c}^{\prime}$ TDLR				
Mean	0.563	1.54	52.7	325
\%Bias	12.6	2.4	5.5	1.6
Intra-day Precision (\%CV)	6.3	3.2	7.5	3.7
Inter-day Precision (\%CV)	11.7	2.3	2.4	3.4
\mathbf{n}	18	18	18	18
Number of Runs	3	3	3	3

Figure S1. Relative abundance of partial detected histone modifications in MCF-7 cells. Although most of the reported modified peptides have been detected, some potential modifications with low abundance are missing.

Figure S2. LC-MS/MS chromatograms of the five surrogate peptides and their corresponding substrate peptides before and after digestion. The sequence of the substrate peptides different from the surrogate peptides is highlighted in blue. For clarity, only one MRM transition for each peptide is presented. The result shows the absence of the substrate peptides and the presence of the surrogate peptides after digestion.
(A)

(B)

Polymer	$\mathbf{T}(\boldsymbol{\mu} \mathbf{m o l})$	\mathbf{M} ($\boldsymbol{\mu} \mathbf{m o l})$	$\mathbf{C}(\boldsymbol{\mu m o l})$	Ratio $\mathbf{T}: \mathbf{M}: \mathbf{C}$	Binding Capacity $(\boldsymbol{\mu} \mathbf{m o l} / \mathbf{g})$
1	16	224	160	$1: 14: 10$	0.61 ± 0.02
2	16	224	320	$1: 14: 20$	0.72 ± 0.03
3	16	224	640	$1: 14: 40$	0.79 ± 0.04
4	16	224	880	$1: 14: 55$	0.93 ± 0.02
5	16	224	1120	$1: 14: 70$	0.73 ± 0.04

* $\mathrm{T}=$ template, $\mathrm{M}=$ monomer, $\mathrm{C}=$ cross-linker

Figure S3. Optimization of MIPs preparation conditions to maximize binding capacity, including (A) different ratios of template and functional monomer (i.e., MAA) where the template/cross-linker molar ratio was 1:40 and (B) different ratios of template and cross-linker (i.e., EGDMA).

Figure S4. FT-IR spectra of $\mathrm{SiO}_{2}-\mathrm{NPs}, \mathrm{SiO}_{2} @ \mathrm{NH}_{2}-\mathrm{NPs}, \mathrm{SiO}_{2} @ \mathrm{CHO}-\mathrm{NPs}$ and the MIPs. The strong absorption peaks near $1100 \mathrm{~cm}^{-1}$ and $3442 \mathrm{~cm}^{-1}$ suggest the formation of SiO_{2}-NPs. After the treatment with APTES, the peak near $2930 \mathrm{~cm}^{-1}$ due to C-H stretch of methylene is observed. In the FT-IR spectrum of $\mathrm{SiO}_{2} @ \mathrm{CHO}-\mathrm{NPs}$, the peak at approximately $1710 \mathrm{~cm}^{-1}$ indicates that aldehyde group has been successfully grafted to $\mathrm{SiO}_{2} @ \mathrm{NH}_{2}$-NPs. Finally, the peak around $1710 \mathrm{~cm}^{-1}$ of the MIPs suggested the existence of EGDMA, demonstrating that the MIPs have been successfully prepared.

Langmuir (template)

Nanoparticles	$\boldsymbol{Q}_{\max }\left(\boldsymbol{\mu \mathrm { mol } / \mathrm { g }) ^ { a }}\right.$	$\boldsymbol{K}_{\mathrm{L}}(\mathrm{L} / \boldsymbol{\mu \mathrm { mol }})^{b}$	$\boldsymbol{R}^{\mathbf{2 c}}$
MIPs	0.917	5.463	0.999
NIPs	0.447	0.152	0.990

${ }^{a}$ Theoretical maximum adsorption capacity
${ }^{b}$ Langmuir constant
${ }^{c}$ Correlation coefficient
Figure S5. The best fit adsorption isotherm of Langmuir model and the estimated adsorption parameters.

Figure S6. Adsorption capacity of the MIPs and the NIPs to the five H3K79 surrogate peptides. The static adsorption test was performed in 1 mL of the solution with different initial concentration of the template peptide ranging from 0 to $30 \mu \mathrm{M}$ and 20 mg of the MIPs or the NIPs. The solution was incubated at the room temperature for 24 h.

Figure S7. Oriented selectivity of the MIPs at different concentration ratios of the surrogate peptides and the competing peptide.

Figure S8. Calibration curves of the five H3K79 surrogate peptides.

Figure S9. LC-MS/MS chromatograms of 0.5 nM surrogate peptides (i.e., LLOQ in this study) with (w) and without (w / o) the MIPs, and the corresponding blanks.

Figure S10. Calibration curves contain all five surrogate peptides, with one peptide with increasing concentration ((A) unmethylated, (B) monomethylated, (C) dimethylated, (D) trimethylated and (E) acetylated) and the other four with a constant concentration of 400 nM each.

Mixed Samples	H3K79	H3K79 $_{\text {me1 }}$	H3K79 $_{\text {me2 } 2}$	H3K79 $_{\text {me3 }}$	H3K79 $_{\text {ac }}$
	400	400	400	10	10
S2	400	200	200	10	200
S3	400	10	10	10	400
S4	200	200	10	200	400
S5	10	400	10	400	400

Figure S11. Simultaneous quantification of the five H3K79 surrogate peptides at varying concentrations. Five samples (S1 to S5) comprising five surrogate peptides with given concentrations randomly between 10 and 400 nM were measured and the calculated concentrations (filled symbols and bars) and theoretical concentrations (dashed lines) are shown.

References

1 M. J. Whitcombe, I. Chianella, L. Larcombe, S. A. Piletsky, J. Noble, R. Porter and A. Horgan, Chem. Soc. Rev., 2011, 40, 1547-1571.
2 Q. Xu, F. Xu, L. Liu and Y. Chen, Anal. Chem., 2016, 88, 8441-8449.
3 D. Shechter, H. L. Dormann, C. D. Allis and S. B. Hake, Nat. Protoc., 2007, 2, 1445-1457.
4 M. Yoshida, M. Kijima, M. Akita, and T. Beppu, J. Biol. Chem., 1990, 265, 17174-17179.

[^0]: * Stable isotope-labeled amino acids $\left[\mathrm{D}_{10}\right]$ Ile and $\left[{ }^{13} \mathrm{C}_{6},{ }^{15} \mathrm{~N}_{4}\right]$ Arg.

