Detection of mephedrone and its metabolites in fingerprints from a controlled human administration study by liquid chromatography-tandem mass spectrometry and paper spray-mass spectrometry

Joanna Czerwinska ^a, Min Jang ^b, Catia Costa ^c, Mark C. Parkin ^{a, d}, Claire George ^e, Andrew T. Kicman ^a, Melanie J. Bailey ^{b, c, *}, Paul I. Dargan ^{f, g}, Vincenzo Abbate ^{a, *}

^a King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK

^b Department of Chemistry, University of Surrey, Surrey, UK

- ^c Surrey Ion Beam Centre, University of Surrey, Surrey, UK
- ^d Now at Eurofins Forensic Services, Teddington, UK

^e Alere Toxicology (now part of Abbott), Abingdon, UK

^f Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK

^g Clinical Toxicology, Faculty of Life Sciences and Medicine, King's College London, London, UK

* Corresponding authors:

Dr Vincenzo Abbate, King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK, <u>vincenzo.abbate@kcl.ac.uk</u>

Dr Melanie J. Bailey, Department of Chemistry, University of Surrey, Surrey, UK, <u>m.bailey@surrey.ac.uk</u>

Keywords: mephedrone; metabolites; fingerprints; LC-MS/MS; paper spray

Supplementary Information

1. Validation results: LC-MS/MS

2.1 Selectivity

No interferences were observed in the extracted blank matrix.

2.2 Linearity

Mean linearity of $r^2 > 0.996$ was achieved for all analytes in all three validation runs.

2.3 LOD and LLOQ

Presented in the paper.

2.4 Precision and accuracy

Intra-day and inter-day precision and accuracy results, summarised in Table S1, were found to be within the acceptable limits. The intra-day inaccuracy was within \pm 15% of the target concentration and ranged from 96.6-115% for MEPH, 101-105% for DHM, 90.9-106% for NOR, 85.6-111% for HYDROXY, 85.5-108% for 4-CARBOXY and 88.3-107% for DHNM. The intra-day imprecision was < 13.8% and ranged from 0.523-5.10% for MEPH, 1.58-4.48% for DHM, 2.048.95% for NOR, 2.64-9.09% for HYDROXY, 2.51-13.8% for 4-CARBOXY and 0.906-5.06% for DHNM. Inter-day precision and accuracy results were acceptable over the validated range with % CV < 14.5% and accuracy within \pm 7.50% of the target concentration.

Table S1. Precision and accuracy at QC Low, QC Medium and QC High; * average value of 18measurements over 3 days

	True value	Mean	(ng/fingerprint	:), (% CV), % acc	curacy
Analyte	(ng/fingerprint)	Day 1 (n=6)	Day 2 (n=6)	Day 3 (n=6)	Inter-day (n=3)*
		0.080	0.085	0.081	0.082
	0.08	1.31%	3.44%	5.10%	4.58%
		100%	107%	101%	102%
		1.04	1.05	0.992	1.02
MEPH	1	2.76%	3.89%	2.28%	3.78%
		104%	105%	99.2%	102%
		4.06	4.58	3.86	4.25
	4	0.523%	1.06%	3.11%	9.61%
		101%	115%	96.6%	106%
		0.041	0.042	0.041	0.042
	0.04	3.07%	2.62%	2.23%	2.63%
		103%	104%	103%	103%
		0.503	0.510	0.505	0.506
DHM	0.5	1.79%	2.20%	2.43%	2.10%
		101%	102%	101%	101%
		4.10	4.10	4.19	4.19
	4	4.48%	1.58%	3.41%	7.37%
		103%	102%	105%	105%
		0.077	0.081	0.075	0.078
	0.08	5.12%	3.68%	8.95%	6.66%
		96.7%	101%	93.1%	96.8%
		0.913	0.951	0.909	0.925
NOR	1	4.71%	5.28%	2.87%	4.74%
		91.3%	95.1%	90.9%	92.5%
		3.66	3.87	4.26	4.03
	4	2.04%	2.66%	5.25%	14.5%
		91.6%	96.6%	106%	101%
		0.049	0.052	0.049	0.050
	0.05	5.91%	2.64%	5.53%	3.21%
		98.1%	104%	98.2%	100%
		1.01	0.892	1.11	1.00
HYDROXY	1	3.14%	8.43%	4.15%	10.7%
		101%	89.2%	111%	100%
		4.16	4.29	3.42	3.96
	4	8.28%	3.64%	9.09%	11.8%
		104%	107%	85.6%	98.9%
		0.045	0.050	0.048	0.048
	0.05	10.7%	5.41%	6.91%	5.49%
4-CARBOXY		90.1%	101%	95.2%	95.3%
	1	0.958	0.863	10.6	0.960
	_				

		2.51%	8.05%	2.91%	10.1%
		95.8%	86.3%	106%	96.0%
		3.98	4.31	3.42	3.90
	4	13.4%	7.58%	13.8%	11.5%
		99.4%	108%	85.5%	97.6%
		0.074	0.083	0.080	0.079
	0.08	5.06%	1.99%	4.96%	1.12%
		92.7%	104%	99.6%	98.7%
		0.883	1.01	0.980	0.957
DHNM	1	3.67%	2.47%	1.83%	0.484%
		88.3%	101%	98.0%	95.7%
		3.83	4.27	4.23	4.17
	4	3.62%	0.906%	2.53%	1.44%
		95.8%	107%	106%	104%

2.5 Recovery and matrix effect

As shown in Table S2, recovery was found to be greater than $60.6 \pm 6.16\%$ for all analytes, with NOR showing the lowest recovery of $60.6 \pm 6.16\%$ and $63.5 \pm 4.32\%$ at QC Low and QC High, respectively. The highest recovery of $91.3 \pm 5.53\%$ and $91.1 \pm 7.57\%$ was achieved for DHM at QC Low and QC High, respectively. The IS-corrected matrix effect values were within $\pm 7.3\%$ for all analytes, showing that significant matrix effects do not affect the assay.

Table S2. Analyte recovery and matrix effect at QC Low and QC High

Analuta	Recovery (% CV), n=6	Matrix Effec	t (% CV), n=6
Analyte	QC LOW	QC HIGH	QC LOW	QC HIGH
MEPH	72.2% (4.27%)	61.9% (5.67%)	101% (1.02%)	96.6% (1.77%)
DHM	91.3% (5.53%)	91.1% (7.57%)	101% (1.34%)	99.1% (0.375%)
NOR	60.6% (6.16%)	63.5% (4.32%)	99.8% (2.99%)	92.7% (1.43%)
HYDROXY	82.5% (5.60%)	62.7% (4.32%)	97.9% (5.02%)	96.1% (6.63%)
4-CARBOXY	83.4% (5.33%)	75.2% (4.24%)	98.6% (8.44%)	99.4% (6.24%)
DHNM	84.9% (8.11%)	70.6% (5.30%)	102% (3.63%)	93.6% (2.39%)

2.6 Carryover

Carryover was not observed.

2.7 Dilution integrity

Good precision (9.91%) and accuracy (92.9%) were achieved for mephedrone following 1 in 100 dilution.

2. Validation results: PS-MS

2.1 Selectivity

Due to the lack of sample preparation and chromatography prior to the ionisation step, isobaric interferences (peak intensity of around 10³-10⁵) for all analytes were present in all tested solvents.

2.2 Linearity

Mean linearity of $r^2 > 0.990$ was achieved for MEPH and DHM in all three validation runs (Figure S1).

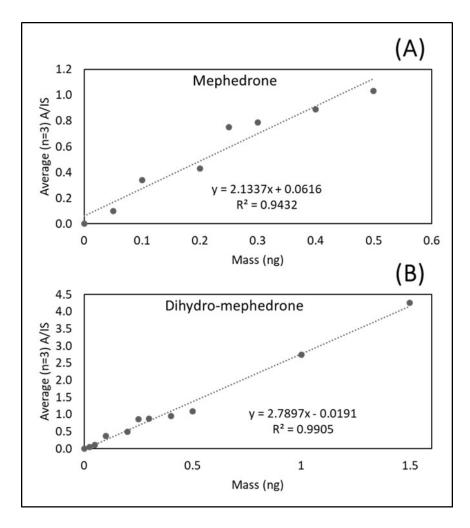


Figure S1. Calibration curves and the corresponding errors expressed as %CV for MEPH (A) and DHM (B); data expressed as ratio of analyte to internal standard (A/IS)

2.3 LOD and LLOQ

Presented in the paper.

2.4 Precision and accuracy

Intra-day and inter-day precision and accuracy results, summarised in Table S3 and Table S4, were found to be within the acceptable limits. Intra and intra-day imprecision and accuracy were within \pm 20% of the target value for both analytes.

Analyte	Analyte pg/fingerprint	Day 1 (n=3)	Day 2 (n=3)	Day 3 (n=3)	Inter-day (n=3)*
	500	0.74	0.67	0.65	0.69
	500	6%	2%	7%	7%
MEPH	1500	3.3	2.74	2.73	2.92
	1500	2%	2%	7%	11%
	500 1500	0.76	0.85	0.68	0.76
DUM		16%	1%	4%	11%
DHM		4.57	4.33	3.43	4.11
		2%	4%	8%	15%

Table S3. Inter- and intra-day precision for MEPH and DHM measured using paper spray; * averagevalue of 9 measurements over 3 days

 Table S4. Intra-day accuracy and %CV of the paper spray method at QC Low and QC High (n=3)

	pg/fingerprint	Calculated mass of QC (ng)	%CV	Accuracy
MEDIL	500	0.48	7%	96%
MEPH	1500	2.44	1%	97%
DUM	500	0.46	7%	91%
DHM	1500	2.55	3%	102%

2.5 Matrix effects

Fingerprint samples were collected from the right thumb (RT) and right index (RI) and as 5 overlapping fingerprint samples (5F). As shown in Table S5, significant matrix effects were not observed for MEPH or DHM.

Table S5. Matrix effects for MEPH and DHM in the present of a single (right thumb, RT and rightindex, RI) or 5 overlapping fingerprints (5F) for a male and female donors

	Matrix effect, (%CV)					
		Male			Female	
Analyte	RT	RI	5F	RT	RI	5F
MEPH	-7 (11%)	-7 (7%)	-10 (6%)	-11 (7%)	-13 (7%)	-8 (5%)
DHM	-3 (6%)	-2 (3%)	-2 (7%)	-6 (11%)	-4 (7%)	-5 (4%)

2.6 Carryover

No carryover effect was observed.

2.7 Stability

Table S6. Week 1 and week 4 stability of MEPH and DHM prepared at 50 ng/mL in solution (Sol) and fingerprints (RT and RI) and stored at different temperatures (n=3); data is represented as +/-% change (%CV)

		1 week @ +5°C	
	Fingerprint (RT)	Fingerprint (RI)	Solution
MEPH	-18% (12%)	-17% (15%)	-6% (18%)
DHM	-40% (15%)	-36% (15%)	-1% (5%)
	4	4 weeks @ +5°C	
	Fingerprint (RT)	Fingerprint (RI)	Solution
MEPH	-37% (39%)	-36% (15%)	6% (6%)
DHM	-56% (40%)	-53% (22%)	-27% (16%)
		1 week @ -20°C	
	Fingerprint (RT)	Fingerprint (RI)	Solution
MEPH	-24% (12%)	-23% (17%)	1% (12%)
DHM	-41% (16%)	-41% (16%)	16% (19%)
	4	weeks @ -20°C	
	Fingerprint (RT)	Fingerprint (RI)	Solution
MEPH	-41% (33%)	-38% (27%)	12% (8%)
DHM	-63% (44%)	-67% (63%)	-21% (11%)

3. PS-MS parameters

Table S7 shows the MS parameters used for the PS-MS method.

	• • • • • • • • • • •	
Tahle S7_MS narameters used	tor the PS-MS method (Thermo	Scientific Q-Exactive Plus Orbitrap)
ruble 57. mis parameters used	Joi the is momenta (memo	

Parameter	Operating Conditions				
Electrospray sour	Electrospray source parameters				
Spray voltage	4 kV				
Capillary temperature	250°C				
S-Lens RF level	50				
Full Sc	an				
Scan type	Full MS-SIM				
Scan rage	<i>m/z</i> 66.7-500				
Resolution	280,000 at <i>m/z</i> 200				
Polarity	Positive				
Automatic gain control target	106				
Maximum inject time	500 ms				
MS/N	15				
Scan type	Parallel Reaction Monitoring				
Resolution	17,500				
Automatic gain control	200,000				
Max inject time	30 ms				
Isolation window	<i>m/z</i> 0.5				
Normalised collision energy	Stepped: 30, 60, 90				

4. PS-MS spectra

Figure S2 and Figure S3 show the MS and MS/MS spectra of all analytes, respectively.

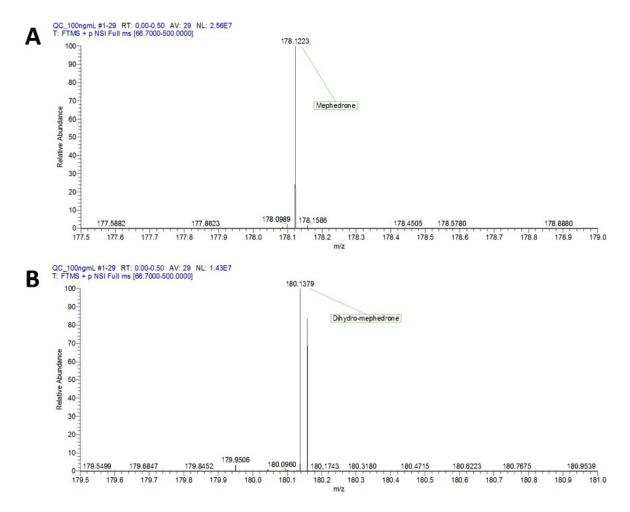


Figure S2. Example mass spectra for (A) MEPH and (B) DHM

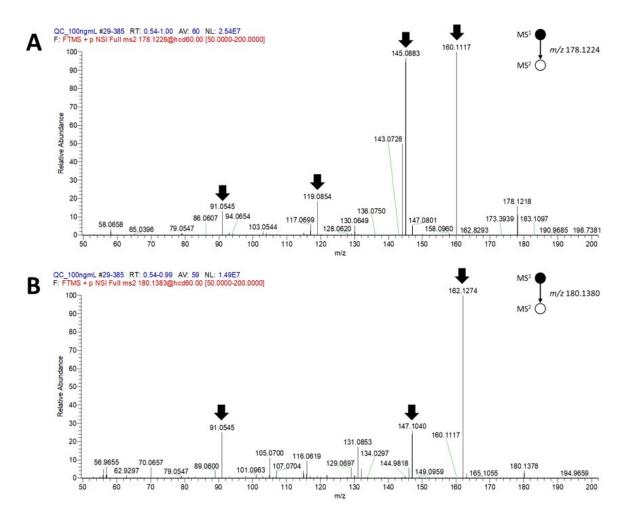


Figure S3. Example MS/MS spectra for (A) MEPH (m/z 178.1 > 160.11) and (B) DHM (m/z 180.1 > 162.13) from a standard (250 pg/fingerprint). Peak assignment was confirmed by agreement with the standard to within 5 ppm.

5. Urine screen

The urine samples were analysed using a standard stimulant (including mephedrone) immunoassay screen at Abbott. The immunoassay was run on a Beckman Coulter 5800 and reagents were purchased from ThermoFisher (see Table S8 for further details). Any positive samples were confirmed by a validated LC-MS method using an Orbitrap MS system.

Analyte	Cut-off
Amphetamines	1000 ng/mL
Barbiturates	200 ng/mL
Benzodiazepines	200 ng/mL
Cannabis	50 ng/mL
Cocaine	300 ng/mL
Methadone	300 ng/mL
Opiates	300 ng/mL
Buprenorphine	10 ng/mL
Ketamine	500 ng/mL
Tramadol	200 ng/mL
Propoxyphene	300 ng/mL
РСР	25 ng/mL
Methaqualone	300 ng/mL
6AM	10 ng/mL
LSD	0.5 ng/mL

Table S8. Analytes and their corresponding cut-off values

LC-MS details:

Mass Spectrometer: Thermo Exactive Orbitrap HCD System with Ion Max Source and H-ESI II Probe

Pump: Accela UHPLC

Autosampler: Accela

Column: Hypersil GOLD 5-x3.1 1.9uM Column, C18