Supporting Information

Acetylcholinesterase-catalyzed Silver Deposition for Ultrasensitive Electrochemical Biosensing of Organophosphorus Pesticide

Zhenhui Liu, Xin Xia, Guoxing Zhou, Lei Ge,* and Feng Li*

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao,

266109, People's Republic of China

*Corresponding author: Lei Ge, Feng Li

E-mail: lge@qau.edu.cn, lifeng@qust.edu.cn

Telephone: +86-532-86080855

Figure S1. (A) Time-dependent absorbance changes of 2.0 mM IDA solution. (B) Time-dependent absorbance changes of working solution containing 2.0 mM IDA, 1.0 mM AgNO₃, and 1.0 mU/mL AChE (exposed to air). (C) Time-dependent absorbance changes of 2.0 mM IDA solution containing 1.0 mU/mL AChE.

Figure S2. The effects of (A) IDA concentration, (B) Ag^+ concentration, and (C) pH on the AChE-catalyzed silver deposition reaction. I_0 and I are the peak current intensity of LSV curve in the absence and presence of 1.0 mU/mL AChE, respectively.

Detection method	Linear range	Detection limit	Reference
Electrochemical method	10 nM to 1.0 μM	4.0 nM	1
Electrochemical method	0.1 ng/mL to 10^5 ng/mL	33 pg/mL	2
Electrochemical method	20 μM to 110 μM	3.5 µM	3
Electrochemical method	10 fM to 1.0 μ M	10 fM	4
Electrochemical method	1.5 nM to 40 nM	1.5 nM	5
Chemiluminescence	0.1 ng/mL to 50 ng/mL	33 pg/mL	6
Chemiluminescence	1.0 ng/mL to 60 ng/mL	33 pg/mL	7
Surface-Enhanced Raman Spectroscopy		1.0 µM	8
Surface-Enhanced Raman Spectroscopy	1.0 nM to 10 μM	0.78 nM	9
Microimmunoassay	0.26 ng/mL to 18 ng/mL	0.11 ng/mL	10
Photoelectrochemical method	0.3 ng/mL to 80 ng/mL	10 pg/mL	11
Photoelectrochemical method	0.2 μM to 16 μM	10 nM	12
Photoelectrochemical method	0.1 ng/mL to 50 ng/mL	30 pg/mL	13
Electrochromic method	100 fM to 1.0 mM	0.1 pM	14
Fluorescence	0.1 nM to 10 μM	0.1 nM	15
Electrochemical method	10 pM to 10 nM	4.0 pM	This work

Table S1. Assay performance comparison of our electrochemical biosensor with other sensors for chlorpyrifos.

References

(1) Zamfir, L.-G.; Rotariu, L.; Bala, C. Biosensors and Bioelectronics 2011, 26, 3692-3695.

(2) Jiao, Y.; Hou, W.; Fu, J.; Guo, Y.; Sun, X.; Wang, X.; Zhao, J. Sensors and Actuators B: Chemical **2017**, 243, 1164-1170.

(3) Kumaravel, A.; Chandrasekaran, M. *Journal of Agricultural and Food Chemistry* **2015**, *63*, 6150-6156.

(4) Talan, A.; Mishra, A.; Eremin, S. A.; Narang, J.; Kumar, A.; Gandhi, S. *Biosensors and Bioelectronics* **2018**, *105*, 14-21.

(5) Chauhan, N.; Narang, J.; Pundir, C. S. Biosensors and Bioelectronics 2011, 29, 82-88.

(6) Ouyang, H.; Lu, Q.; Wang, W.; Song, Y.; Tu, X.; Zhu, C.; Smith, J. N.; Du, D.; Fu, Z.; Lin, Y. *Analytical Chemistry* **2018**, *90*, 5147-5152.

(7) Ouyang, H.; Tu, X.; Fu, Z.; Wang, W.; Fu, S.; Zhu, C.; Du, D.; Lin, Y. *Biosensors and Bioelectronics* **2018**, *106*, 43-49.

(8) Xu, Q.; Guo, X.; Xu, L.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H. Sensors and Actuators B: Chemical **2017**, 241, 1008-1013.

(9) Yao, G.-H.; Liang, R.-P.; Huang, C.-F.; Wang, Y.; Qiu, J.-D. *Analytical Chemistry* **2013**, 85, 11944-11951.

(10) Dobosz, P.; Morais, S.; Bonet, E.; Puchades, R.; Maquieira, Á. Analytical Chemistry 2015, 87, 9817-9824.

(11) Wang, H.; Zhang, B.; Zhao, F.; Zeng, B. *ACS Applied Materials & Interfaces* **2018**, *10*, 35281-35288.

(12) Li, H.; Li, J.; Xu, Q.; Hu, X. Anal. Chem. 2011, 83, 9681-9686.

(13) Liu, Q.; Yin, Y.; Hao, N.; Qian, J.; Li, L.; You, T.; Mao, H.; Wang, K. Sensors and Actuators B: Chemical **2018**, 260, 1034-1042.

(14) Capoferri, D.; Álvarez-Diduk, R.; Del Carlo, M.; Compagnone, D.; Merkoçi, A. Analytical Chemistry **2018**, *90*, 5850-5856.

(15) Zhang, K.; Mei, Q.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Analytical Chemistry **2010**, 82, 9579-9586.