Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water

Xiaoxia Li and Kyung Ho Row*

Department of Chemistry and Chemical Engineering, Inha University,
Incheon 402-751, Korea

Validation of re-usability

Table S1 lists the regression equations obtained from the calibration curves for the three types of levofloxacin: X is the peak area; Y is the concentration.

To validate the re-usability of the nanoparticles, three levels (5, 25, and 50 μ g/mL) of a levofloxacin standard solution were used in the adsorption test. A 1 mL aliquot of a standard levofloxacin solution was added to the SPE column. After washing, the target was eluted from the SPE column with 1 mL of MeOH–HAc (9:1, v/v). The eluent collected at a constant volume (1 mL) was analyzed by HPLC. This process was repeated three times (n = 3) on the same day using the same sorbent. The intraassay and inter-assay precision was validated in the same step as above.

 Table S1 Calibration plots, LODs, and LOQs for levofloxacin.

Regression equation	\mathbb{R}^2	LOD (μg/mL)	LOQ (μg/mL)
Y=0.185X×10 ⁻⁵ +4.2176	0.9995	0.03	0.01

Table S2 Validation of re-usability recoveries (n=3) and RSD values of *levofloxacin* standard solution.

Spiked (μg /mL)	Intra-day		Inter-day	
	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)
5	99.1	0.5	97.4	1.5
25	99.8	0.2	99.9	0.7
50	98.6	1.4	98.3	0.3