Supporting information

Facile synthesis of cyclodextrin-metal organic framework decorated with Ketjen Black and platinum nanoparticles and its application for the electrochemical detection of ofloxacin

Feng Luan^a, Yunfei Wang^a, Shuang Zhang^a, Xuming Zhuang^{a,*}, Chunyuan Tian^a, Xiuli Fu^a, Lingxin Chen^{b,c,d*}

^a College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.

- ^b Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- ^c Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China

^d Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

E-mail address:

xmzhuang@iccas.ac.cn (X. Zhuang);

lxchen@yic.ac.cn (L. Chen).

^{*}Corresponding author: Tel./Fax: +86-535-2109130.

Fig. S1. The electrochemical oxidation mechanisms of ofloxacin.

Fig. S2. (A) The XRD pattern of PtNPs/KB/CD-MOFs. (B) N₂ adsorption-desorption isotherms of PtNPs/KB/CD-MOFs.

Fig. S3. (A) The influence of (A) KB, (B) PtNPs content on the electrochemical responses for ofloxacin at the PtNPs/KB/CD-MOFs (other experimental conditions refer the Experimental section). (C) Nyquist plot of CD-MOFs, KB/CD-MOFs and PtNPs/KB/CD-MOFs in PBS solution (pH = 7.4).

Fig. S4. CV responses of (A) six PtNPs/KB/CD-MOFs/GCE were prepared under the same conditions, (B) the PtNPs/KB/CD-MOFs/GCE was repeated at six times.

Fig. S5. Selectivity of the PtNPs/KB/CD-MOFs for ofloxacin over other interfering substances in PBS solutions (pH=7.4), 5 μ M ofloxacin, 500 μ M glucose, NaCl, UA, and KCl, 10 g L⁻¹ BSA, 1 mg mL⁻¹ Met, Cys and Lysine, 3 mM Ca²⁺, Mg²⁺ and Na⁺.

Table S1. Comparison of the PtNPs/KB/CD-MOFs/GCE with other of loxacin sensors.

Sensors	Detection limit (µM)	Linear range (µM)	Ref.
Bi_2S_3/Bi_2WO_6	0.906	1 - 100	1
ZnO/GR ^a /GCE ^b	0.33	1 - 100	2
rGO ^c /Pt-Au/GCE	0.05	10 - 100	3
Cu ₂ O/NG ^d /Nafion/GCE	0.34	0.5 - 280	4
PtNPs/KB/CD-MOFs/GCE	0.037	0.08 - 100	This work

^a Graphene;

^b Glassy carbon electrode;

^c Graphene oxide;

^d Nitrogen-doped grapheme.

References

- 1. A. Sangeeta, K. Do-Heyoung, Chem. Eng. J., 2018, 10, 692-705.
- 2. X. Si, Y. Wei, C. Wang, L. Li, Y. Ding, Anal. Methods, 2018, 10, 1961-1967.
- 3. Z. Jiang, L. Qin, Y. Tang, M. Zhang, Electroanalysis, 2017, 29, 602-608.
- 4. F. Wu, X. Fan, C. Le, B. Jiang, W. Sun, X. Wei, Chem. Res. Chin. Univ., 2016, 32, 468-473.