Supporting Information

Colorimetric detection of Hg (II) based on the gold amalgamtriggered reductase mimetic activity in aqueous solutions by employing AuNP@Fe-TCPP-MOF nanoparticles

Xiuli Wang, Hao Wang, Lan Guo, Guang Chen, Rongmei Kong, Fengli Qu, Lian Xia*

Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong 273165, PR China

*Corresponding author: Lian Xia E-mail address: <u>xialian01@163.com</u> Tel/fax: (+86) 537 4458301

Table of Contents:

Fig. S1 TEM image of AuNP@MOF after being treated with Hg^{2+} ions

Fig. S2 The UV spectrum of the MB system before and after incubation with AuNPs@MOF and the simple mixture of Au NPs and MOF

Fig. S3 Optimization of experimental conditions

 Table S1 Recovery of tap water, Yihe river water samples containing different concentrations of Hg²⁺ measured by UV–Vis spectrometry

Table S2 The comparison of different methods for Hg^{2+} detection

Fig. S1 TEM image of AuNP@MOF after being treated with Hg2+ ions

Fig. S2 The UV spectrum of the MB system before (black line) and after incubation with AuNPs@MOF (red line) and the simple mixture of Au NPs and MOF (blue line)

Fig. S3 Optimization of sensing conditions. (A) The effect of amount of AuNP@MOF on the response signal; A_0 represents the absorbance of the original MB in the sensing system at 665 nm, A represents the absorbance of MB in sensing system by adding various dosage of AuNP@MOF wtih Hg²⁺ at 665 nm. (B) The effect of MB concentration on the response signal. A_0 represents the absorbance of the original MB in the sensing system at 665 nm; A represents the absorbance of MB in sensing system at 665 nm; A represents the absorbance of MB in sensing system at 665 nm; A represents the absorbance of ne original MB in the sensing system at 665 nm; A represents the absorbance of MB in sensing system by adding certain Hg²⁺ at 665 nm. (C) The effect of NaBH₄ concentration on the response signal. A_0 represents the absorbance of the original NaBH₄ in the sensing system at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm; A represents the absorbance of NaBH₄ in sensing system by adding certain Hg²⁺ at 665 nm

Sample	Hg ²⁺ spiked (pM)	Hg ²⁺ detected (pM) Mean ± SD	Recovery (%)	
Tap water 1	200	194.68 ± 0.11	97.34 ± 0.06	
Tap water 2	250	253.40 ± 0.05	101.36 ± 0.02	
Tap water 3	300	298.68 ± 0.13	99.56 ± 0.04	
Yihe river water 1	200	202.92 ± 0.03	101.46 ± 0.02	
Yihe river water 2	250	249.65 ± 0.05	99.86 ± 0.02	
Yihe river water 3	300	303.90 ± 0.04	101.13 ± 0.01	

Table S1 Recovery of tap water, Yihe river water samples containing different concentrations of Hg²⁺ measured by UV–Vis spectrometry

Table S2 The comparison of different methods for Hg^{2+} detection

Material	Method	Linear range	Detection limit	Time	Ref
Au/Hexanedithiol/ Rhodamine B	Fluorescence	0-19.9 µM	2.49 nM	2 mins	1
Colorimetric Sensor based on G- Quadruplex	Colorimetric method	250-1250 nM	50 nM	240 min	2
Carbon nanodots	Fluorescence	0-3 µM	4.2 nM	5 mins	3
Antibodies/BSA-glutathione	Cold-vapor atomic absorption	2.5-49.9 nM	2.99 nM	few weeks	4
DNA/GO	Fluorescence	0-8 nM	1.5 nM	10 mins	5
AuNP/ Iron-porphyric MOF	UV-vis spectra	200- 400 pM	103 pM	2 s	This work

References

- K. Daware, R. Shinde, R. S.Kalubarme, M. Kasture, A. Pandey, C. Terashima, and S. W. Gosavi, Sensor. Actuat. B-Chem., 2018, 265, 547-555.
- 2 L. Tao, S.-J. Dong, and E.-K. Wang, Anal. Chem., 2009, 81(6), 2144-2149.
- 3 L. Zhou, Y. Lin, Z. Huang, J. Ren, and X. Qu, Chem. Commun. (Camb), 2012, 48(8), 1147-1149.
- 4 D. E. Wylie, L. D. Carlson, R. Carlson, F. W. Wagner, and S. M. Schuster, Anal, Biochem., 1991, 194(2), 381-387.
- 5 Y. Feng, X. Shao, K. Huang, J. Tian, X. Mei, Y. Luo, and W. Xu, Chem. Commun., 2018, 54(58), 8036-8039.