Supporting Information

Direct analysis in real time coupled with quadrupole-Orbitrap high-

resolution mass spectrometry for rapid analysis of pyrethroid

preservatives in wooden food contact materials

Xianshuang Meng^{a,b}, Yueguang Lv^{a,c}, Qing Lv^a, Yulin Deng^b, Hua Bai^a, Qiang Ma^{a,*}

^a Chinese Academy of Inspection and Quarantine, Beijing 100176, China ^b School of life science, Beijing Institute of Technology, Beijing 100081, China ^c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding Author:

Qiang Ma Chinese Academy of Inspection and Quarantine Beijing Economic-Technological Development Area Beijing 100176, China Email: maqiang@caiq.org.cn Phone: +86 10 53897463 Fax: +86 10 53897456

Table of Contents

Supplementary Tables:

- Table S1:Basic information of pyrethroid preservatives and the internal standardtrans-cypermethrin- d_6
- Table S2: Mean recoveries of the proposed method (n = 3)

Supplementary Figures:

- Figure S1: Optimization of the type of working gas (a), gas temperature (b), and DART grid electrode voltage (c)
- Figure S2: Comparison of recovery with acetonitrile, acetone, acetonitrile/acetone (1:1, v/v), *n*-hexane/acetone (1:1, v/v), ethyl acetate, and *n*-hexane as the extraction solvents (n = 3).
- Figure S3: Comparison of recovery using C₁₈ and PSA with different combination (5 mg + 5 mg, 5 mg +10 mg, 5 mg +15 mg, 10 mg + 5 mg, 10 mg + 10 mg, and 10 mg + 15 mg) as the purification sorbents.
- Figure S4: The extracted ion chronograms of five consecutive tests for permethrin (500 ng mL-1). Peak areas were labelled on the top.

cypermeanin-a ₆				
Compound	Formula	CAS	Mw	LogKow
Permethrin	$C_{21}H_{20}Cl_2O_3$	52645-53-1	390.1	7.15
Cyfluthrin	$C_{22}H_{18}Cl_2FNO_3$	68359-37-5	433.1	6.29
Cypermethrin	$C_{22}H_{19}Cl_2NO_3$	52315-07-8	415.1	6.27
Deltamethrin	$C_{22}H_{19}Br_2NO_3$	52918-63-5	503.0	6.20
trans-Cypermethrin-d ₆	$C_{22}H_{13}D_6Cl_2NO_3$	82523-65-7	421.1	6.27

Table S1. Basic information of pyrethroid preservatives and the internal standard *trans*-cypermethrin- d_6

PYRs	Spiked level (mg kg ⁻¹ , $n = 3$)	Recovery (%)	RSD (%)
	0.10	78.6	9.6
Permethrin	0.20	81.3	7.9
	0.50	72.1	6.3
Cyfluthrin	0.22	77.1	10.7
	0.44	78.2	10.4
	1.10	76.6	11.8
Cypermethrin	0.26	81.1	8.9
	0.52	77.4	6.2
	1.30	82.7	7.6
Deltamethrin	0.50	74.4	5.2
	1.00	75.1	8.1
	2.50	79.6	9.3

Table S2. Mean recoveries of the proposed method (n = 3)

Figure S1. Optimization of the type of working gas (a), gas temperature (b), and DART grid electrode voltage (c)

Figure S2. Comparison of recovery with acetonitrile, acetone, acetonitrile/acetone (1:1, v/v), *n*-hexane/acetone (1:1, v/v), ethyl acetate, and *n*-hexane as the extraction solvents (n = 3).

a: permethrin; b: cyfluthrin; c: cypermethrin; d: deltamethrin.

Figure S3. Comparison of recovery using C_{18} and PSA with different combination (5 mg + 5 mg, 5 mg +10 mg, 5 mg +15 mg, 10 mg + 5 mg, 10 mg + 10 mg, and 10 mg + 15 mg) as the purification sorbents.

a: permethrin; b: cyfluthrin; c: cypermethrin; d: deltamethrin.

Fig. S4 The extracted ion chronograms of five consecutive tests for permethrin (500 ng mL⁻¹). Peak areas were labelled on the top.