Electronic Supporting Information

Analytical determination of heroin, fentanyl and fentalogues using High-Performance Liquid Chromatography with Diode Array and Amperometric Detection

Hadil M. Elbardisy^{1,2}, Christopher W. Foster¹, Loanda Cumba³, Lysbeth H. Antonides¹, Nicolas Gilbert^{1,4}, Christopher J. Schofield^{4,5}, Tarek S. Belal⁶, Wael Talaat², Oliver B. Sutcliffe^{1,4}, Hoda G. Daabees⁷, Craig E. Banks^{1*}

^{1:} Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.

^{2:} Pharmaceutical Analysis Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt.

³: Faculty of Science & Health, Dublin City University, Glasnevin, Whitehall, Dublin 9, Ireland.

⁴: MANchester DRug Analysis and Knowledge Exchange (MANDRAKE), Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.

^{5:} Greater Manchester Police, Openshaw Complex, Lawton Street, Openshaw, Manchester, M11 2NS, UK.

^{6:} Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.

^{7:}Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt.

Email: <u>c.banks@mmu.ac.uk;</u> Tel: ++(0)1612471196; Fax: ++(0)1612476831 Website: www.craigbanksresearch.com

^{*}To whom correspondence should be addressed.

Instrumentation

Voltammetric measurements were conducted using a 'µAutolab type III' (MetrohmAutolab, The Netherlands) potentiostat /galvanostat interfaced to a PC loaded with NOVA 2.1 software. All measurements were performed using a 10 mL voltammetric cell and a conventional three-electrode system. A platinum wire and Ag/AgClwere used as counter and reference electrodes, respectively. Screen-printed graphite macroelectrodes (SPEs), with a 3.1 mm diameter, were used as working electrodes, they were fabricated in-house as previously reported ^{9, 25}. Note that due to their scales of economy and reproducibility, a new SPE was used for each experiment performed.

Preparation of Standard Stock Solutions and Working Solutions for Cyclic Voltammetry

12.5 mg of each of HRN, cocaine (COC), fentanyl hydrochloride (**2c**) and its derivatives (**2a**, **2b**, **2d** – **2k**) were weighted separately into thirteen 25.0 mL glass volumetric flasks and diluted with ultrapure deionized water to obtain stock solutions of 0.5 mg mL⁻¹ of each. Working solutions were prepared as follows: 0.5 mL of each drug stock solution were transferred separately into 5.0 mL volumetric flasks, the volume was made to the mark using 0.04 M Britton-Robinson buffer (B-R buffer, pH 2.0) to obtain solutions of 50 µg mL⁻¹ of each drug. Each solution was transferred quantitatively to an electrochemical cell, degassed with pure nitrogen for 10 minutes, and cyclic voltammograms were recorded between +0.6 to +1.3 V (*vs.* Ag/AgCl) using the following scan rates: 5, 15, 25, 50, 100, 250 and 500 mV s⁻¹. Similarly, working solutions in 0.04 M B-R buffer pHs 7.0 and 10.0 were prepared for each drug at three different pHs: 2.0, 7.0 and 10.0, using scan rates t: 5, 15, 25, 50, 100, 250 and 500 mV s⁻¹. Three new SPEs were used for each measurement and the average of the three anodic peak currents (*I_{Pa}*) and the three anodic peak potentials (*E_{Pa}*) were recorded. All solutions were protected from light by aluminum foil and the stock solutions were refrigerated at 4 °C for two weeks.

System suitability parameters

System suitability parameters are listed within **Tables 2** and **3** (within the main paper) which include: (i) retention time in minutes (t_R) for each drug eluting from the chromatographic column (**Method I**); (ii) Relative retention time (*RRT*), which is determined with respect to fentanyl retention time obtained from **Method I**; (iii) Retention time (in minutes) for drugs eluted from the flow-cell system (**Method II**); (iv) Relative retention time (RRT) determined with respect to fentanyl retention time obtained from **Method II**; (v) Capacity factor (*k'*), ideally *k'* value is > 2; (vi) Number of theoretical plates expressed in plates per m (*N*), generally *N* is > 2000; (vii) Height equivalent to theoretical plate expressed in m (HETP); (viii) Resolution between two successive eluted peaks (R_s), ideally R_s is > 2; (ix) Asymmetry factor (A_s) which indicates how symmetrical is the shape of the eluted peak and it is important factor in quantification of peak areas. A_s has to be between 0.8 – 1.2; (x) Relative retention factor (α) which should be > 1.

Table S1. Comparison of the peak potential ($E_p vs.$ Ag/AgCl) of the investigated drugs in 0.04 M B-R Buffer at three different pH's over a range of scan rates.

Analyte Scan rate (mV s ⁻¹)	HRN ^a	COC ^a	(2c) ^a	(2a) ^a	(2b) ^a	(2d) ^a	(2e) ^a	(2f) ^a	(2g) ^a	(2h) ^a	(2i) ^a	(2j) ^a	(2k) ^a	
pH 2.0														
No peak for all the target analytes in all the studied scan rates at this pH.														
		1 00 +	0.89 +		0.88 +	0.85 +	0.87+	0.86 +		0.89 +	0.87 +	0.87 +	0.85 +	
5	0.87 ± 0	0.01	0.07 ±	0.87 ± 0	0.00 ±	0.05 ±	0.01	0.00 ±	0.85 ± 0	0.07 ±	0.01	0.07 ±	0.05 ±	
15	0.80 ± 0	1.03 ±	0.00 + 0	0.87 ± 0	0.88 ± 0	0.86 ±	$0.88 \pm$	$0.87 \pm$	$\begin{array}{c} 0.88 \pm \\ 0.01 \end{array}$	0.89 ±	0.00 ± 0	00 ± 0 0.90 ± 0	0.88 ±	
15	0.89 ± 0	0.01	0.90 ± 0	$0.8 / \pm 0$		0.02	0.01	0.01		0.01	0.90 ± 0		0.01	
25	0.89 ±	1.05 ± 0	0.91 ±	0.87 ±	0.89 ± 0	0.87 ±	$0.88 \pm$	$0.87\pm$	0.86 ±	0.89 ±	0.91 ±	$0.90 \pm$	0.89 ±	
	0.01	1.00	0.01	0.01	0.00	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	
50	0.91 ± 0	1.06 ± 0.01	0.91 ± 0.01	0.88 ± 0.01	0.89 ± 0.01	0.88 ± 0.01	0.90 ± 0.01	$\boldsymbol{0.89\pm0}$	0.89± 0.01	0.92 ±	0.91 ± 0.01	0.92 ± 0.01	0.90 ± 0	
100	0.92 ±	1.00 + 0	0.00		$0.89 \pm$		$0.90 \pm$	0.91 ±	$0.90 \pm$		$0.93 \pm$		0.92 ±	
100	0.01	1.08 ± 0	0.92 ± 0	0.90 ± 0	0.01	0.90 ± 0	0.01	0.01	0.01	0.92 ± 0	0.01	0.92 ± 0	0.01	
250	0.94 ± 0	1 11 + 0	$0.96 \pm$	$0.92 \pm$	0.91 ± 0	0.92 ±	$0.93 \pm$	$0.93 \pm$	$0.93 \pm$	0.95 ±	0.95 ± 0	0 94+ 0	0.94 ± 0	
250	0.91 ± 0	1.11 ± 0	0.01	0.01	0.91 = 0	0.01	0.01	0.01	0.01	0.01		0.74±0	0.94 ± 0	
500	0.95 ± 0	$1.13 \pm$	$0.99 \pm$	$0.94 \pm$	0.95 ± 0	$0.95 \pm$	$0.95 \pm$	$0.96 \pm$	$0.95 \pm$	0.97 ± 0	$0.98 \pm$	$0.96 \pm$	$0.97 \pm$	
				0.01		0.02	0.01	0.01	0.01	0.01		0.01	0.01	
		0.07	0.75		0.74	рн 10.0					0.70			
5	No peak	$0.8 / \pm$	$0.75 \pm$	0.76 ± 0	0.74 ± 0.02	$0.78 \pm$	No peak	No peak	No peak	$0.80 \pm$	0.79 ± 0.02	0.77 ± 0	No peak	
		0.01	0.01		0.02	0.01				0.03	$\frac{0.02}{0.85+}$	0.84 +		
15	No peak	0.01	0.01	0.77 ± 0	0.01	0.79 ± 0	No peak	No peak	No peak	0.01	0.04	0.01	0.78 ± 0	
25	$0.78 \pm$	0.91 ± 0	$0.78 \pm$	0.79 ± 0	$0.82 \pm$	$0.81 \pm$	No neak	No peak	No neak	0.86 ±	$0.86 \pm$	$0.87 \pm$	$0.81 \pm$	
	0.01	0.01	0.01	0.02	0.77±0	0.01	0.01	по реак по реак	NO peak	пореак	0.01	0.02	0.01	0.02
50	$0.80 \pm$	0.94 ± 0	$0.79 \pm$	0.81 ± 0	0.85 ± 0	$0.84 \pm$	No peak	$0.83 \pm$	$0.83 \pm$	$0.88 \pm$	$0.88 \pm$	$0.90 \pm$	$0.85 \pm$	
	0.01		0.02			0.01	1	0.01	0.01	0.02	0.02	0.02	0.01	
100	0.82 ± 0.01	0.95 ± 0	0.82 ± 0	0.83 ± 0	0.87 ± 0	0.84 ± 0.02	0.84 ± 0	0.83 ± 0	0.82 ± 0	0.91 ± 0.01	0.90 ± 0.01	0.93 ± 0	0.86 ± 0	
250	0.85 ± 0	$85 \pm 0 \qquad 0.97 \pm 0$	0.86 ± 0	$0 0.86 \pm 0$	0.89 ± 0	0.85 ±	0.85 ± 0	$0.85 \pm 0.82 \pm$	0.82 ± 0	0.93 ±	0.94 ±	0.92 ±	0.87 ±	
230			0.00 ± 0			0.01	0.03 ± 0	0.01	0.02 ± 0	0.01	0.02	0.03	0.01	
500	0.87 ± 0	1.00 ± 0	0.89 ± 0	0.90 ± 0	0.93 ± 0	0.87 ± 0	0.86 ± 0	0.87 ± 0	0.85 ± 0	0.97 ± 0	$0.97 \pm$	$0.97 \pm$	0.87 ±	
500	0.07 ± 0	1.00 =0	0.07 = 0		0.75 = 0	5.67 = 0	0.00 = 0	0.07 = 0	5.55 = 0	5.57 = 0	0.02	0.03	0.01	

^a Mean ± SD of peak potential (E_p) of each drug at the studied scan rate. (n=3)

Table S2. Evaluation of the robustness of the proposed HPLC-DAD Method (Method I) for the determination of HRN, fentanyl and its 10 fentalogues.

Analyte Parameters	HRN	(2a)	(2b)	(2c)	(2d)	(2e)	(2f)	(2g)	(2h)	(2i)	(2j)	(2k)
Temperature (25 ± 2 °C)	100.58 ± 0.33	100.61 ± 0.31	100.03 ± 0.33	100.63 ± 0.42	100.81 ± 0.20	100.10 ± 0.64	99.83 ± 0.58	100.60 ± 0.84	100.27 ± 0.36	100.97 ± 0.49	99.67 ± 0.48	99.99 ± 0.62
Molarity of buffer (20 ± 2.0 mM)	100.82 ± 1.16	100.56 ± 1.00	100.51 ± 0.99	100.15 ± 1.04	100.98 ± 0.89	100.19 ± 1.24	$\begin{array}{c} 100.43 \pm \\ 0.86 \end{array}$	100.44 ± 0.45	99.36 ± 0.17	100.64 ± 0.79	100.27 ± 0.69	100.42 ± 1.07
pH of buffer (7.0 ± 0.2 pH units)	$\begin{array}{c} 100.47 \pm \\ 0.53 \end{array}$	$\begin{array}{c} 100.66 \pm \\ 0.67 \end{array}$	$\begin{array}{c} 100.14 \pm \\ 0.98 \end{array}$	$\begin{array}{c} 100.08 \pm \\ 0.84 \end{array}$	100.76 ± 0.54	$\begin{array}{c} 100.24 \pm \\ 0.65 \end{array}$	$\begin{array}{c} 100.02 \pm \\ 1.26 \end{array}$	100.40 ± 0.75	$\begin{array}{c} 100.68 \pm \\ 0.98 \end{array}$	100.23 ± 0.91	100.91 ± 0.66	100.19 ± 0.77
RSD% ^b												
Temperature (25 ± 2 °C)	0.33	0.31	0.33	0.42	0.20	0.64	0.58	0.83	0.36	0.49	0.48	0.62
Molarity of buffer (20 ± 2.0 mM)	1.15	0.99	0.98	1.04	0.88	1.24	0.86	0.45	0.17	0.78	0.69	1.07
pH of buffer (7.0 ± 0.2 pH units)	0.53	0.67	0.98	0.84	0.54	0.65	1.26	0.75	0.97	0.91	0.65	0.77
						$t_R \pm SD$	c					
Temperature (25 ± 2 °C)	2.79 ± 0.02	4.09 ± 0.01	4.79 ± 0.02	8.10 ± 0.04	10.79 ± 0.08	13.20 ± 0.05	14.26 ± 0.07	18.08 ± 0.13	20.65 ± 0.29	25.50 ± 0.15	27.64 ± 0.20	29.42 ± 0.22
Molarity of buffer (20 ± 2.0 mM)	2.79 ± 0.05	$\begin{array}{c} 4.09 \pm \\ 0.04 \end{array}$	4.79 ± 0.04	8.10 ± 0.09	10.79 ± 0.14	$\begin{array}{c} 13.20 \pm \\ 0.17 \end{array}$	14.26 ±0.18	18.08 ± 0.24	20.65 ± 0.31	$\begin{array}{c} 25.50 \pm \\ 0.36 \end{array}$	$\begin{array}{r} 27.64 \pm \\ 0.38 \end{array}$	29.42 ±0.41
pH of buffer (7.0 ± 0.2 pH units)	2.79 ± 0.20	4.09± 0.39	4.79 ± 0.48	8.10± 0.94	10.79 ± 1.34	13.20 ± 1.69	14.26 ± 1.84	18.08 ± 2.43	20.65 ± 2.99	25.50 ± 3.55	27.64 ± 3.83	29.42 ± 4.17

^a Mean \pm SD of percentage recoveries of peak areas of each drug at the three studied parameters. (*n*=3) ^b Percentage relative standard deviation of peak areas of each drug at the three studied parameters. ^c Mean \pm SD of retention time of each drug at the three studied parameters. (*n*=3)

Analyte	Mean % recovery ± SD ^a											
Parameters	HRN	(2a)	(2b)	(2c)	(2d)	(2e)	(2 f)	(2g)	(2h)	(2i)	(2j)	(2 k)
Temperature	99.48 ±	99.73 ±	$100.38 \pm$	$100.52 \pm$	$100.30 \pm$	$100.47 \pm$	$100.07 \pm$	$99.76 \pm$	$99.73 \pm$	$100.39 \pm$	$100.56 \pm$	$100.10 \pm$
$(25 \pm 2 \ ^{\circ}C)$	0.82	0.66	0.66	0.73	0.98	0.63	0.75	1.34	0.53	0.76	0.75	0.64
Molarity of buffer	$100.39 \pm$	$100.50 \pm$	$100.37 \pm$	$100.50 \pm$	$100.51 \pm$	$100.43 \pm$	$101.12 \pm$	$100.30 \pm$	$99.65 \pm$	$100.09 \pm$	$100.53 \pm$	$100.39 \pm$
$(20 \pm 2.0 \text{ mM})$	0.73	0.72	0.65	0.58	0.80	0.59	1.18	0.60	0.48	0.81	0.63	0.75
pH of buffer	99.75 ±	$100.56 \pm$	$100.42 \pm$	$100.62 \pm$	$100.36 \pm$	$100.54 \pm$	$100.30 \pm$	$100.28 \pm$	$99.66 \pm$	$100.51 \pm$	$100.20 \pm$	$99.94 \pm$
$(7.0 \pm 0.2 \text{ pH units})$	0.51	0.63	0.65	1.06	0.60	0.58	0.92	0.55	0.40	0.58	0.93	0.97
RSD% ^b												
Temperature (25 ± 2 °C)	0.82	0.66	0.66	0.73	0.98	0.63	0.75	1.34	0.53	0.76	0.75	0.64
Molarity of buffer $(20 \pm 2.0 \text{ mM})$	0.73	0.72	0.65	0.58	0.80	0.59	1.17	0.60	0.48	0.81	0.63	0.75
pH of buffer (7.0 ± 0.2 pH units)	0.51	0.63	0.65	1.05	0.60	0.58	0.92	0.55	0.40	0.58	0.93	0.97

Table S3. Evaluation of the robustness of the proposed HPLC-AD Method (Method II) for the determination of HRN, fentanyl and its 10 fentalogues.

^a Mean \pm SD of percentage recoveries of peak heights (current, μ A) of each drug at the three studied parameters. (*n*=3)

^bPercentage relative standard deviation of peak heights (current, µA) of each drug at the three studied parameters.

Figure S1. Overlay of cyclic voltammograms (CV) for 50 µg mL⁻¹ of HRN, COC, fentanyl and its 10 fentalogues in 0.04 MB-R buffer in 3 different pHs: **(A)** pH2.0, **(B)** pH10.0, and **(C)** pH 7.0;Scan rate: 50 mV s⁻¹.

Figure S2. UV absorption spectrum of (A) 10 μ g mL⁻¹fentanyl and (B) 20 μ g mL⁻¹ HRN in solution of the mobile phase showing their λ_{max} at 205 nm.

Figure S3. Effect of **(A)** flow rate and **(B)** potential (E V⁻¹) on current intensity in HPLC-AD flow cell system.

Figure S4. (A) Representative HPLC-DAD chromatogram **(B)** Representative amperogram for a solution containing 300 μ g mL⁻¹ of each of d-glucose, d-fructose, sucrose, lactose, starch, aerosil 200, sodium lauryl sulfate, stearic acid and sodium carboxymethyl cellulose using Eclipse XDB-C8 column (150 x 4.6 mm, i.d. 5 μ m); mobile phase: acetonitrile : 20 mM ammonium formate –100 mM potassium chloride buffer (pH 7.0) (30 : 70% v/v); flow rate 1.5 mL min⁻¹, detector wavelength (UV): 205 nm and column temperature 25 °C.

Figure S5. (A) Representative HPLC-DAD chromatogram **(B)** Representative amperogram for a solution containing 50 μ g mL⁻¹ of each of HRN, fentanyl (2c), fentalogues (2a, 2b, 2d – 2k) and 300 μ g mL⁻¹ of each of d-glucose, d-fructose, sucrose, lactose, starch, aerosil 200, sodium lauryl sulfate, stearic acid and sodium carboxymethyl cellulose using Eclipse XDB-C8 column (150 x 4.6 mm, i.d. 5 μ m); mobile phase: acetonitrile : 20 mM ammonium formate –100 mM potassium chloride buffer (pH 7.0) (30 : 70% v/v); flow rate 1.5 mL min⁻¹, detector wavelength (UV): 205 nm and column temperature 25 °C.

H-NMR and C-NMR spectra of the fentalogues (2a-2k) utilised within the study are presented below.

¹H-NMR (400 MHz, d₆-DMSO) of 2-methoxy-*N*-(1-phenethylpiperidin-4-yl)-*N*-phenylacetamide hydrochloride (methoxyacetylfentanyl.HCl, **2a**)

¹H-NMR (400 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylacetamide hydrochloride (acetylfentanyl.HCl, **2b**)

¹H-NMR (400 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylisobutyramide hydrochloride (isobutyrfentanyl.HCl, **2**e)

¹H-NMR (400 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-butyramide hydrochloride (butyrfentanyl.HCl, **2f**)

¹H-NMR (400 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylbenzamide hydrochloride (benzoylfentanyl.HCl, **2h**)

¹³C-NMR (100 MHz, d₆-DMSO) of 2-methoxy-*N*-(1-phenethylpiperidin-4-yl)-*N*-phenylacetamide hydrochloride (methoxyacetylfentanyl.HCl, **2a**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylacetamide hydrochloride (acetylfentanyl.HCl, **2b**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylpropionamide hydrochloride (fentanyl.HCl, **2c**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylcyclopropanecarboxamide hydrochloride (cyclopropylfentanyl.HCl, **2d**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylisobutyramide hydrochloride (isobutyrfentanyl,HCl, **2e**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-butyramide hydrochloride (butyrfentanyl.HCl, **2f**)

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylbenzamide hydrochloride (benzoylfentanyl.HCl, **2h**)

Peak denoted by (*) is residual acetone.

¹³C-NMR (100 MHz, d₆-DMSO) of *N*-(1-phenethylpiperidin-4-yl)-*N*-phenylcyclopentanecarboxamide hydrochloride (cyclopentylfentanyl.HCl, **2k**)

REFERENCES

1. Zuway, K.Y.; Smith, J.P.; Foster, C.W.; Kapur, N.; Banks, C.E. and Sutcliffe, O.B. "Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high" product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD)" *Analyst*, 140 (18), 6283-6294, (2015).

2. Smith, J.P.; Metters, J.P.; Irving, C.; Sutcliffe, O.B. and Banks, C.E. "Forensic electrochemistry: the electroanalytical sensing of synthetic cathinone-derivatives and their accompanying adulterants in "legal high" products" *Analyst*, 139 (2), 389-400, (2014).

3. Guidelli, R. "Diffusion toward planar, spherical, and dropping electrodes at constant potential: I. Theory" *Electroanal Chem Interfacial Electrochem*, 33 (2), 291-302, (1971).

4. Guidelli, R. "Diffusion toward planar, spherical, and dropping electrodes at constant potential: II. Examples" *Electroanal Chem Interfacial Electrochem*, 33 (2), 303-317, (1971).

5. Oldham, K.B. "Diffusive transport to planar, cylindrical and spherical electrodes" *Electroanal Chem Interfacial Electrochem*, 41 (3), 351-358, (1973).

6. Schneider, S.; Ait-m-bark, Z.; Schummer, C.; Lemmer, P.; Yegles, M.; Appenzeller, B. and Wennig, R. "Determination of fentanyl in sweat and hair of a patient using transdermal patches" *J Anal Toxicol*, 32 (3), 260-264, (2008).

7. Yu, M.; Abdallah, I.A.; Shin, S.H.; Hammell, D.C.; Stinchcomb, A.L. and Hassan, H.E. "LC–MS determination of fentanyl in human serum and application to a fentanyl transdermal delivery pharmacokinetic study" *Bioanalysis*, 9 (20), 1551-1560, (2017).

8. Hisada, T.; Katoh, M.; Hitoshi, K.; Kondo, Y.; Fujioka, M.; Toyama, Y.; Ieda, H.; Gocho, S. and Nadai, M. "A Simple Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Plasma Fentanyl Concentration in Rats and Patients with Cancer Pain" *Biol Pharm Bull*, 36 (3), 412-416, (2013).

9. Lambropoulos, J.; Spanos, G.A. and Lazaridis, N.V. "Development and validation of an HPLC assay for fentanyl, alfentanil, and sufentanil in swab samples" *J Pharm Biomed Anal*, 23 (2), 421-428, (2000).

10. Schönberg, L.; Grobosch, T.; Lampe, D. and Kloft, C. "New screening method for basic compounds in urine by on-line extraction–high-performance liquid chromatography with photodiode-array detection" *J Chromatrogr A*, 1134 (1), 177-185, (2006).