## **Supporting Information**

## **Contents:**

Figure S1: The characterization data, <sup>1</sup>H NMR, <sup>13</sup>C NMR, HRMS of probe

**Figure S2:** The synthesis and HRMS of product probe-ClO<sup>-</sup>, and the partial <sup>1</sup>H NMR spectra comparison of probe and product probe-ClO<sup>-</sup>

Table S1: Comparison of some representative fluorescent probes for detecting HClO

**Figure S3:** The UV-Vis spectra titration of probe for detecting ClO<sup>-</sup> in 84 disinfectant

## References





HRMS spectra of probe.

**Figure S1.** <sup>1</sup>H NMR (600 MHz, Chloroform-*d*)  $\delta$  7.80 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 13.7 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.37 (t, J = 7.5 Hz, 2H), 7.25 (s, 1H), 7.22 – 7.18 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.98 (d, J = 13.7 Hz, 2H), 4.10 (q, J = 6.8 Hz, 4H), 3.58 (s, 4H), 3.25 (s, 4H), 2.58 (s, 3H), 2.50 (t, J = 5.9 Hz, 4H), 1.81 (d, J = 6.0 Hz, 2H), 1.45 (s, 12H), 1.38 (t, J = 7.1 Hz, 6H). <sup>13</sup>C NMR (150 MHz, Chloroform-*d*):  $\delta$ : 169.5, 161.0, 144.2, 142.0, 141.7, 140.5, 132.3, 130.1, 128.8, 128.3, 127.1, 124.4, 121.8, 110.0, 98.3, 53.3, 48.3, 47.7, 46.2, 45.0, 40.6, 39.5, 39.4, 29.7, 28.4, 25.5, 21.8, 21.5, 12.1. HRMS m/z: [M]<sup>+</sup> calculated for C<sub>45</sub>H<sub>55</sub>N<sub>4</sub>O<sub>2</sub>S<sup>+</sup>: 715.40402; measured: 715.40594.



HRMS spectra of product probe-ClO-.



The partial <sup>1</sup>H NMR spectra comparison of probe in CDCl<sub>3</sub> and probe-ClO<sup>-</sup> in CD<sub>3</sub>OD.

**Figure S2.** The probe (15  $\mu$ M) was dissolved in CH<sub>3</sub>OH (5 ml), and NaClO (147  $\mu$ M) was poured into the solution. The mixture was stirred at ambient temperature for 5 min to complete the reaction. Then the final mixture was diluted by water (5 ml) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 ml). The organic layer was concentrated under reduced pressure evaporation to give the product probe-ClO<sup>-</sup>. HRMS m/z: [M+H]<sup>+</sup> calculated for C<sub>34</sub>H<sub>41</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup>: 509.31625; measured: 509.31635.

| Probes              | Response          | Emission      | NIR         | Ref.         |
|---------------------|-------------------|---------------|-------------|--------------|
|                     | time              | wavelength/nm | ratiometric |              |
|                     |                   |               | fluorescent |              |
|                     | 90 s              | 475, 658      | Yes         | 1            |
| N-OH                | 35 minutes        | 556           | No          | 2            |
|                     | 1 s               | 505           | No          | 3            |
| но зі он            | 80 s              | 606           | No          | 4            |
| Se<br>N<br>+N       | dozens of seconds | 786           | No          | 5            |
| N OH                |                   | 598, 633      | Yes         | 6            |
| HO,<br>N<br>N<br>O- | 1 minute          | 470, 520      | No          | 7            |
|                     | 10<br>minutes     | 656, 688      | Yes         | 8            |
|                     | 20 s              | 608, 735      | Yes         | This<br>work |

Table S1. Comparison of some representative fluorescent probes for detecting HClO



**Figure S3.** 84 disinfectant was purchased from a local supermarket (Taiyuan, P.R. China). In 2 mL solution of H<sub>2</sub>O/CH<sub>3</sub>OH= 1/1 (v/v) containing the probe (15  $\mu$ M), different volumes: 2, 4, 6  $\mu$ L of 84 disinfectant samples were added in the same solution system, respectively.

## References

- 1 J. C. Xu, H. Q. Yuan, C. Q. Qin, L. T. Zeng and G. M. Bao, RSC Adv., 2016, 6, 107525–107532.
- 2 S. I. Reja, V. Bhalla, A. Sharma, G. Kaur and M. Kumar, Chem. Commun., 2014, 50, 11911–11914.
- 3 H. Zhu, J. L. Fan, J. Y. Wang, H. Y. Mu and X. J. Peng, J. Am. Chem. Soc., 2014, 136, 12820–12823.
- 4 Q. A. Best, N. Sattenapally, D. J. Dyer, C. N. Scott and M. E. McCarroll, J. Am. Chem. Soc., 2013, 135, 13365–13370.
- 5 G. H. Cheng, J. L. Fan, W. Sun, J. F. Cao, C. Hu and X. J. Peng, Chem. Commun., 2014, 50, 1018–1020.
- 6 Y. W. Jun, S. Sarkar, S. Singha, Y. J. Reo, H. R. Kim, J. J. Kim, Y. T. Chang and K. H. Ahn, *Chem. Commun.*, 2017, 53, 10800–10803.
- 7 H. Chen, H. M. Shang, Y. Liu, R. Guo and W. Y. Lin, Adv. Funct. Mater., 2016, 26, 8128-8136.
- 8 B. X. Shen, Y. Qian, Z. Q. Qi, C. G. Lu, Q. Sun, X. Xia and Y. P. Cui, J. Mater. Chem. B, 2017, 5, 5854-5861.