Supplementary Material

Temperature-controlled ionic liquid dispersive liquid-liquid microextraction combined with fluorescence detection of ultra-trace Hg²⁺ in water

Yun Hui^{1, 2, 4}, Chenyu Xiong^{1, 2}, Chao Bian¹, Shilang Gui^{2, 3}, Jianhua Tong¹, Yang Li¹, Chengyao Gao¹, Yanyan Huang³, William

C. Tang⁴, Shanhong Xia^{1*}

¹ State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China

² University of Chinese Academy of Sciences, Beijing 100190, China

³ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems,

Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

⁴ Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92617, USA

*Corresponding Author: Shanhong Xia, shxia@mail.ie.ac.cn Tel: + 86 10 58887180, fax: + 86 10 58887180

Fig.S1. The comparison of PL spectrum of mercury solution with 1% IL between the same day (a) and 16 days later (b).

Fig.S2. The PL intensity of 10 μ M PTR in 20 μ M mercury solutions with 15% IL, 30% water fraction at 55 °C water bath.

Fig.S3. The PL intensity of 10 μ M PTR in 0 μ M (a) and 10 μ M (b) mercury solutions with 15 IL%, 30% water fraction after 10-hour water bath at 55°C.

Fig.S4. The PL intensity difference between 10 μ M and 0 μ M mercury solutions with 10 μ M PTR, 30% water fraction, different IL% at 55 °C water bath.

Fig.S5. Emission spectra of PTR in the presence of increasing concentrations of Hg²⁺ (0-1.25 µM) in 25% IL, ACN: H₂O (4:1, v/v,), ex: 355nm.

Fig.S6. Linear correlation between the PL intensity at 589.2nm and Hg^{2+} concentration. The linear equation was y = 36.395x + 6.1396 ($R^2 = 0.9991$) and y = 3.0282x + 10.278 ($R^2 = 0.9949$), respectively.