Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Development of a Whole-cell Biosensor for the Determination of Tyrosine in

Urine for Point-of-care Diagnostics

Chieh Lin^{*a*†}, Qian-Xian Zhang^{*a*†}, and Yi-Chun Yeh^{*a**}

^a Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan

[†] These authors contributed equally to this work.

*Corresponding author: Yi-Chun Yeh

E-mail: vichuny@ntnu.edu.tw. Phone: +886277346117. Fax:+886229324249

Strain	Relevant genotype	Source
E. coli DH5a	F^- endA1 glnV44 thi-1 recA1 relA1gyrA96 deoR nupG Φ80dlacZΔM15 Δ (lacZYA-argF)U169hsdR17(rK-mK+) λ^-	Purchased from Protech Technology
YCY_737	E. coli DH5α pLacUV5-tyrR-ParoF-rfp-PtyrP-GFP	pYCY_737 transformed into <i>E. coli</i> DH5α
YCY_795	E. coli DH5α P14-tyrR-ParoF-RFP-PtyrP-GFP	pYCY_795 transformed into <i>E. coli</i> DH5α
YCY_815	E. coli DH5α pTet-tyrR-ParoF-rfp-PtyrP-GFP	pYCY_815 transformed into <i>E. coli</i> DH5α
YCY_851	E. coli DH5α P14-tyrR-ParoF-RFP-PtyrP+3-GFP	pYCY_851 transformed into <i>E. coli</i> DH5α
YCY_890	E. coli DH5α P14-tyrR-ParoF-RFP-PtyrP+3- RBS30-GFP	pYCY_890 transformed into <i>E. coli</i> DH5α
YCY_891	E. coli DH5α P14-tyrR-ParoF-RFP-PtyrP+3- RBS34-GFP	pYCY_891 transformed into <i>E. coli</i> DH5α
YCY_930	E. coli DH5α P14-tyrR-ParoF-RBS30-RFP- PtyrP+3-RBS30-GFP	pYCY_930 transformed into <i>E. coli</i> DH5α

Table S1. Bacterial strains used in this study

Plasmid	Relevant genotype	Source
pYCY_019	pBbE2k plasmid with <i>TetR(rev)-pTetR/A(rev)-RFP,</i> <i>Kan^R</i>	1
pYCY_020	pBbE5k plasmid with LacI(rev)-pLacI(rev)- pLacUV5-RFP, Kan ^R	1
pYCY_658	pBbE5k plasmid with ParoF-rfp, Kan ^R	 PCR fragments of <i>ParoF</i> were amplified with primer 583 and 584, from <i>E. coli</i> DH5α as the template. The PCR products were digested with EcoRI and BamHI, and cloned into plasmid pYCY_020 with EcoRI and BgIII.
рҮСҮ_663	pBbE5k plasmid with PtyrP-gfp, Kan ^R	PCR fragments of <i>PtyrP</i> were amplified with primer 585 and 586, from <i>E. coli</i> DH5α as the template. The PCR products were digested with EcoRI and BamHI, and cloned into plasmid pYCY_020 with EcoRI and BgIII.
pYCY_681	pBbE5k plasmid with pLacUV5-tyrR-ParoF-rfp, Kan ^R	PCR fragments of $tyrR$ were amplified with primer 603 and 588, from <i>E. coli</i> DH5 α as the template. The PCR products were digested with EcoRI and BamHI, and cloned into plasmid pYCY_658 with EcoRI and BgIII.
pYCY_682	pBbE5k plasmid with pLacUV5-tyrR-PtyrP-gfp, Kan ^R	PCR fragments of $tyrR$ were amplified with primer 603 and 588, from <i>E. coli</i> DH5 α as the template. The PCR products were digested with EcoRI and BamHI, and cloned into plasmid pYCY_663 with EcoRI and BgIII.
pYCY_712	pBbE5k plasmid with P14-RFP, Kan ^R	DNA fragments of P14 were annealed with primer 631 and 632,

Table S2. Plasmids used in this study

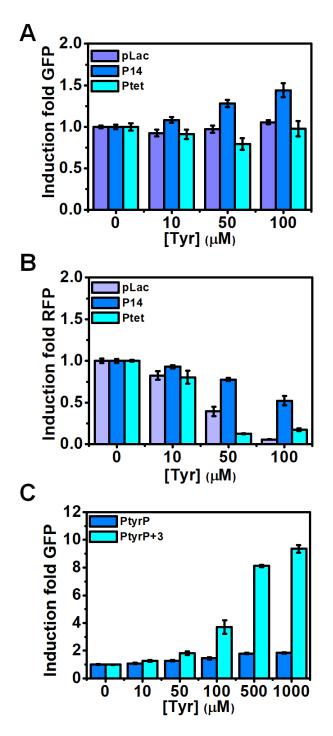
		and cloned into plasmid pYCY_20
		with AatII and EcoRI.
рҮСҮ_734	pBbE5k plasmid with P14-tyrR-ParoF-RFP, Kan ^R	DNA fragments of <i>tyrR-ParoF-RFP</i> from pYCY_681 were digested with EcoRI and XhoI, and subcloned into plasmid pYCY_712.
pYCY_737	pBbE5k plasmid with pLacUV5-tyrR-ParoF-rfp- PtyrP-gfp, Kan ^R	PCR fragments of <i>PtyrP-GFP</i> were amplified with primer 637 and 639, from pYCY_663 as the template. The PCR products were digested with BgIII and XhoI, and cloned into plasmid pYCY_681 with BamHI and XhoI.
pYCY_795	pBbE5k plasmid with P14-tyrR-ParoF-RFP-PtyrP- GFP, KanR	PCR fragments of <i>PtyrP-GFP</i> were amplified with primer 637 and 639, from pYCY_663 as the template. The PCR products were digested with BgIII and XhoI, and cloned into plasmid pYCY_734 with BamHI and XhoI.
pYCY_815	pBbE2k plasmid with pTet-tyrR-ParoF-rfp-PtyrP- gfp	DNA fragments of <i>tyrR-ParoF-</i> <i>RFP-PtyrP-GFP</i> from pYCY_795 were digested with EcoRI and XhoI, and subclone into plasmid pYCY_19.
pYCY_851	pBbE5k plasmid with P14-tyrR-ParoF-RFP- PtyrP+3-GFP, Kan ^R	Mutation of PtyrP+3 were mutated with primer 695 and 696, from pYCY_795 as the template.
pYCY_890	pBbE5k plasmid with P14-tyrR-ParoF-RFP- PtyrP+3-RBS30-GFP	DNA fragments of RBS30 were annealed with primer 715 and 716, and cloned into plasmid pYCY_851 with BgIII and NdeI.
pYCY_891	pBbE5k plasmid with	DNA fragments of RBS34 were annealed with primer 717 and 718,

	P14-tyrR-ParoF-RFP- PtyrP+3-RBS34-GFP	and cloned into plasmid pYCY_851 with BglII and NdeI.
pYCY_930	pBbE5k plasmid with	Deletions RBS were used primer 763 and 764, and insertions DNA
	P14-tyrR-ParoF-RBS30- RFP-PtyrP+3-RBS30-GFP	fragments of RBS30 with primer 772 and 773.
	-	

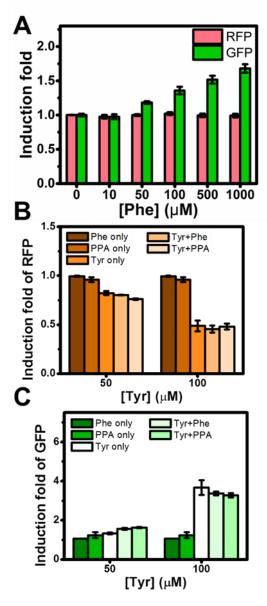
Primer	Sequence $(5' \rightarrow 3')$
0583_EcoR I-BglII- ParoF_for	TTTTGAATTCttttAGATCTagggagtgtaaatttatctatacagaggtaag
0584_ParoF - BamHI_rev	TTTTGGATCCgatggcgatcctgtttatgctc
0585_EcoR I-BglII- PtyrP_for	TTTTGAATTCttttAGATCTgcctagcgtagcgattgcc
0586_PtyrP - BamHI_rev	TTTTGGATCCgctttcttctgtcctgacgatctt
0588_tyrR- ter- BamHI_rev	TTTTGGATCCaaaaaaaaaccccgccctgtcaggggggggtttttttttt
0603_EcoR I-RBS- tyrR_for	TTTTGAATTCtttaagaaggagatatatttatgcgtctggaagtcttttgtga
0631_P14 promoter (AT)_for	CttgacaattaatcatccggctcgtataatgtgtggaG
0632_P14 promoter (AT)_rev	AATTCtccacacattatacgagccggatgattaattgtcaaGACGT
0637_BglII- term_for	TTTTAGATCTaaaaaaaaaccccgcccctga
0639_GFP- BamHI- XhoI_rev	TTTTCTCGAGtttGGATCCttacttgtacagctc
0695_PtyrP +3 (m)_F	TCGtatgtaacgtcggtttgac
0696_PtyrP +3 (m)_R	tggtgtaaatataaatgtacaataaaaag
0715_BglII- RBS30- NdeI 5'fw	GATCTtctagagATTAAAGAGGAGAAAtacCA

 Table S3. Primers used in this study

0716_BglII- RBS30- NdeI 3'rw	TATGgtaTTTCTCCTCTTTAATctctagaA
0717_BglII- RBS34- NdeI 5'fw	GATCTtctagagAAAGAGGAGAAAtacCA
0718_BglII- RBS34- NdeI 3'rw	TATGgtaTTTCTCCTCTTTctctagaA
0763_890 ParoF- dRBS-RFP F'w	CATATGGCGAGTAGCGAAG
0764_890 ParoF- dRBS-RFP R'w	AGATCCGATGGCGATCCT
772_ParoF- RBS30- RFP 5'fw	ttaatctctagaCATATGGCGAGTAGCGAAG
773_ParoF- RBS30- RFP 3'rw	ctctttaatcAGATCCGATGGCGATCCT


Table S4. TyrR protein levels and their induced fluorescence outputs.

in Tyr	P14	PLacUV5*	Ptet
GFP	1.440	1.056	0.980
RFP	0.522	0.056 0.174	
in Phe	P14	PLacUV5*	Ptet
in Phe GFP	P14 0.969	PLacUV5* 1.385	Ptet 1.088


The fluorescence induction folds of GFP/RFP in the presence of Tyr and Phe at 100 μ M when TyrR was driven by P14, PlacUV5, and Ptet promoters.

Method	Linear range (µM)	LOD (µM)	Analysis time	Ref.
GC-MS	5.0-160	1.6	18 min	2
			(excluding	
			pretreatment	
			steps)	
HPLC-UV	1.25-80	0.31	7 min	3
			(excluding	
			pretreatment	
			steps)	
Electrochemical	1-100	0.39	4 min	4
sensor				
LC-MS	5.5-110	2.2	7 min	5
			(excluding	
			pretreatment	
			steps)	
Cell-based	5-150	4.72	5 hr	This work

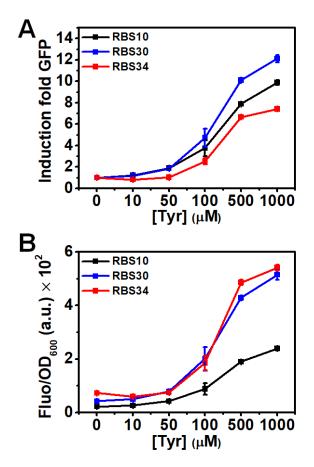

 Table S5. Comparison of the current method with recent reported studies in Tyr detection.

Figure S1 The fluorescence induction folds of (A) GFP and (B) RFP of plasmids carrying various promoters for TyrR expression. (C) The induction folds of GFP of cells carrying P14-TyrR-PtyrP/PtyrP+3-GFP plasmids.

Figure S2. (A) Induction fold of sensor cells in the presence of Phe at various concentrations. (B) RFP and (C) GFP interference test of sensor cells in the co-existence of Phe and PPA.

Figure S3. Comparison of (A) induction folds and (B) fluorescence intensities/ OD_{600} of 24 h post-induction of various ribosome-binding sites.

- 1. T. S. Lee, R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee and J. D. Keasling, *J. Biol. Eng.*, 2011, **5**, 12.
- 2. C. Deng, Y. Deng, B. Wang and X. Yang, *J. Chromatogr. B*, 2002, **780**, 407-413.
- 3. G. Neurauter, S. Scholl-Bürgi, A. Haara, S. Geisler, P. Mayersbach, H. Schennach and D. Fuchs, *Clin. Biochem.*, 2013, **46**, 1848-1851.
- 4. Z. Wei, Y. Yang, L. Zhu, W. Zhang and J. Wang, *RSC Adv.*, 2018, **8**, 13333-13343.
- 5. S. Andrenšek, A. Golc-Wondra and M. Prosek, *J. AOAC Int.*, 2003, **86**, 753-758.