Electronic Supplementary Information

for

Performance evaluation of enantioseparation materials based on chitosan isobutylurea derivatives

Gui-Hua Zhang, Shuang Liang, Sheng Tang*, Wei Chen, Zheng-Wu Bai*

School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.

*Corresponding authors:

Sheng Tang (S. Tang)

E-mail address: stang@wit.edu.cn; Fax: +86 27 87194560; Tel: +86 27 87195680

Zheng-Wu Bai (Z.-W. Bai)

E-mail address: zwbai@wit.edu.cn; Fax: +86 27 87194560, Tel: +86 27 87195680

Table of Contents

- 1. Structures of chiral analytes (Fig. S1)
- 2. ¹H NMR spectrum of chitosan isobutylurea (Fig. S2)
- 3. ¹H NMR spectra of *CSs1–3* (**Figs. S3–S5**)
- 4. Enantioseparation results of ADMPC- and CDMPC-based CSPs (Table S1)

1. Structures of chiral analytes

Fig. S1 Structures of chiral analytes¹

2. ¹H NMR spectrum of chitosan isobutylurea

Fig. S2 ¹H NMR spectrum of chitosan isobutylurea (400 MHz, CF₃COOD, 25 °C).

3. ¹H NMR spectra of CSs1-3

Fig. S3 ¹H NMR spectrum of CS1 (600 MHz, DMSO-d₆, 90 °C)

Fig. S4 ¹H NMR spectrum of CS2 (600 MHz, DMSO-d₆, 90 °C)

Fig. S5 ¹H NMR spectrum of *CS3* (600 MHz, DMSO-*d*₆, 90 °C)

S.N.	ADM	IPC-based C	CSP	CDMI	PC-based C	CSP	M.P.
·	k_1	α	R _s	k_1	α	R _s	-
1	+0.57	1.52	2.04	+1.08	1.42	3.17	А
	+0.52	1.88	3.73	+0.97	1.49	3.90	В
	+0.53	1.86	3.84	+1.01	1.31	2.71	С
2	+1.09	1.22	1.55	-1.68	1.30	3.49	А
	+1.18	1.49	3.22	-1.48	1.23	2.68	В
	+1.23	1.72	4.70	-1.53	1.28	2.84	С
3	1.09	1.00	0.00	-2.15	1.12	1.23	А
	+0.75	1.08	0.54	-1.78	1.07	0.87	В
	$^{+}0.70$	1.06	0.46	-1.83	1.06	0.74	С
4	2.34	1.00	0.00	+3.33	1.14	1.78	А
	1.96	1.00	0.00	+2.21	1.08	1.02	В
	1.73	1.00	0.00	+2.06	1.06	2.77	С
5	0.47	1.00	0.00	+0.94	1.16	0.48	А
	0.45	1.00	0.00	$^{+}0.87$	1.17	0.73	В
	0.45	1.00	0.00	+0.90	1.23	1.50	С
6	^R 3.54	1.21	0.91	^s 7.44	1.12	0.81	А
	^R 3.59	1.09	0.56	6.06	1.00	0.00	В
	3.13	1.00	0.00	^R 6.09	1.08	0.70	С
7	^R 4.99	1.95	3.16	^R 6.02	1.23	1.56	А
	^R 1.73	1.38	1.52	^R 2.03	1.31	2.10	В
	^R 1.22	1.25	1.31	^R 1.84	1.22	1.72	С
8	+2.67	1.52	2.00	4.46	1.00	0.00	А
	+1.41	3.02	5.70	2.43	1.00	0.00	В
	+1.29	3.11	6.60	2.25	1.00	0.00	С
9	^R 3.53	1.69	3.13	^R 3.49	1.25	2.36	А
	^R 1.61	1.46	2.14	^R 1.54	1.21	2.02	В
	^R 1.16	1.35	2.04	^R 1.45	1.18	1.83	С
10	3.49	1.00	0.00	$^{+}2.82$	1.45	4.55	А
	+2.75	1.08	0.63	+2.37	1.40	4.12	В
	+2.34	1.09	0.84	+2.46	1.39	4.47	С
11	^R 7.52	1.40	1.94	^s 8.88	1.13	1.01	А
	^R 2.69	1.27	1.57	^s 3.08	1.10	0.90	В
	^R 1.83	1.24	1.55	^s 2.78	1.10	0.89	С
12	^R 1.53	1.46	0.72	^R 2.12	1.15	0.75	А
	1.66	1.00	0.00	1.67	1.00	0.00	В
	1.56	1.00	0.00	1.74	1.00	0.00	С

Table S1 Enantioseparation results of ADMPC- and CDMPC-based CSPs

Table S1 to be continued

Continued Table S1

S.N.	ADMPC-based CSP			CDMPC-based CSP			M.P.
	k_1	α	R _s	k_1	α	R _s	-
13	0.95	1.00	0.00	^R 1.38	1.38	2.37	А
	0.69	1.00	0.00	^R 1.11	1.34	2.62	В
	0.67	1.00	0.00	^R 1.16	1.22	1.93	С
14	^R 20.33	1.13	0.53	^R 11.62	1.19	0.86	А
	^R 11.54	1.62	2.68	^R 5.94	1.19	1.47	В
	^R 9.68	1.81	4.17	^R 5.54	1.14	1.21	С
15	^{2R,38} 5.49	1.19	0.92	<i>r.t.</i> > 120 min			А
	^{2R,3S} 4.90	1.18	1.09	^{2R,3S} 10.48	1.28	2.48	В
	^{2R,38} 3.77	1.18	1.24	^{2R,3S} 7.87	1.26	2.64	С
16	^s 0.98	1.11	0.44	1.19	1.00	0.00	А
	0.73	1.00	0.00	0.89	1.00	0.00	В
	0.69	1.00	0.00	0.97	1.00	0.00	С
17	4R,181.79	1.95	3.87	3.75	1.00	0.00	А
	^{4R,1S} 1.65	1.94	3.68	^{4R,18} 2.13	2.32	7.29	В
	4R,181.37	1.66	3.05	^{4R,1S} 2.15	2.11	7.45	С
18	^s 4.41	1.10	0.62	^R 2.12	1.15	0.75	А
	^s 4.18	1.10	0.58	1.67	1.00	0.00	В
	^s 2.81	1.09	0.58	1.74	1.00	0.00	С
19	2.41	1.00	0.00	2.31	1.00	0.00	А
	-1.75	1.10	0.56	1.91	1.00	0.00	В
	1.55	1.00	0.00	1.89	1.00	0.00	С
20	^R 3.08	1.44	2.41	^R 3.50	1.47	3.47	А
	^R 1.44	1.37	1.92	^R 1.60	1.25	2.17	В
	^R 1.02	1.31	1.56	^R 1.56	1.18	1.77	С

S.N.: series number of analytes; r.t.: retention time. M.P.: mobile phase, A: *n*-hexane/isopropanol (90/10, v/v); B: *n*-hexane/ethanol (90/10, v/v); C: *n*-hexane/ethanol/methanol (90/5/5, v/v/v). +, –, R, S, (2R,3S) and (4R,1S) at the superscript of k_1 refer to the optical rotation or configuration of the first-eluted enantiomer. Flow rate: 1.0 ml min⁻¹; detection temperature: 25 °C; column size: Φ 250 mm × 4.6 mm; silica gel: 7 µm, 1000 Å. Enantioseparation results of CDMPC-based CSP were cited from Ref. [1].

Reference

1. S. Liang, S. H. Huang, W. Chen and Z. W. Bai, *Anal. Chim. Acta*, 2017, **985**, 183–193.