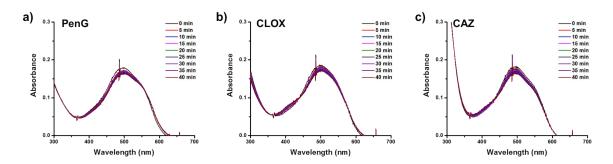
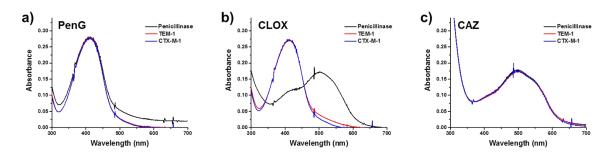
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

# **Supplementary Information**


Multi-screening of  $\beta$ -lactam antibiotics for  $\beta$ -lactamase resistance by means of a paper-based analytical device with the 4-(2-pyridylazo)resorcinol (PAR)–Hg<sup>2+</sup> complex

Suji Lee, Min Sik Eom and Min Su Han\*

Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea


\*E-mail: happyhan@gist.ac.kr; Tel: +82-62-715-2848

## Stability of PAR-Hg<sup>2+</sup> complex in presence of β-lactam antibiotics



**Figure S1** UV/Vis spectrum of PAR (20 μM)–Hg<sup>2+</sup> (40 μM) complex containing β-lactam antibiotics substrate (100 μM), a) PenG, b) CLOX, c) CAZ in sodium phosphate buffer (pH 7.0, 20 mM).

# Detection of β-lactamase resistance of β-lactam antibiotics using PAR-Hg<sup>2+</sup> complex



**Figure S2** UV/Vis spectrum of cocktail of β-lactam antibiotics (100  $\mu$ M) and PAR (20  $\mu$ M)–Hg<sup>2+</sup> (40  $\mu$ M) complex after incubation for 20 min with each different β-lactamase (50 ng/mL).

#### Characterization of OTS-modified paper

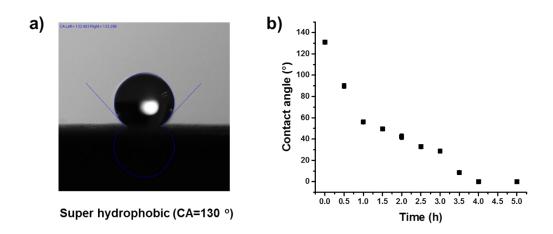
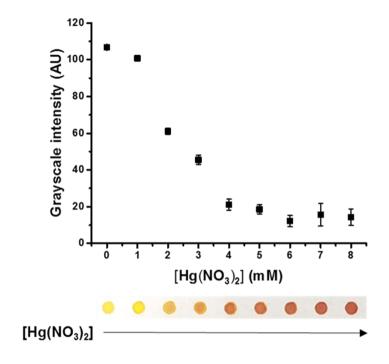




Figure S3 a) Drop of water (1  $\mu$ L) on OTS-modified paper, b) effect of UV exposure time on contact angles.

## Optimization of PAR-Hg<sup>2+</sup> complex for paper-based colorimetric assay



**Figure S4** Plot of intensities of PAR–Hg<sup>2+</sup> complex spot versus different  $Hg(NO_3)_2$  concentration with fixed PAR (2 mM).