Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Microplastics analysis in environmental samples –

Recent pyrolysis-gas chromatography-mass spectrometry method

improvements to increase the reliability of mass related data

Marten Fischer, Barbara M. Scholz-Böttcher*

Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany.

Supplement content: 15 pages (cover page included), 6 tables, 5 figures, 1 text paragraphs

Table S1	(page S-2)	Pyrolysis-GCMS/Thermochemolysis conditions
Table S2	(page S-2)	Marker compounds and indicator ions used for identification and quantification
Table S3	(page S-3)	Polymer standards used for identification and quantification
Table S4	(page S-3)	Indicator compounds and indicator ions used for quantification with <i>S/N</i> -ratio of the smallest calibration point
Table S5 (a-i)	(pages S-5 ff.)	Calibration parameters for area and the ratio to $ISTD_{py}$
Table S6	(page S-14)	MP content of the samples
Figure S1	(page S-4)	Semi-open CP-pyrolysis targets & MF-pyrolysis cups
Figure S2	(page S-15)	MDI-PUR
Figure S3	(page S-15)	Examples of calibration curves of CP-PyGCMS and MF-PyGCMS with higher polymer amounts outside the linearity range.
Figure S4	(page S-16)	Preconcentrated samples (seawater, salt & sediment) on GFF
Figure S5	(page S-16)	Example of calibration curve (PET) for evaluation of sediments without addition of $ISTD_{py}$
Text section S1	. (page S-4)	Calibration and internal standardization of the pyrolysis process
Text section S2	(page S-4)	Process standard deviation s _{x0}

Pyrolysis-GCMS/Thermochemolysis

,	, , ,
Micro furnace pyrolyzer	EGA/PY-3030D (FrontierLabs)
carrier gas	Helium
curie temperature	590°C
transfer line temperature	320°C
Gas chromatograph	7890B (Agilent)
injector	split/split less
mode	split 15:1
temperature	300°C
column	DB5 (J&W); 30 m x 0.25 mm ID, film thickness 0.25 µm
flow (const.)	0.8 ml/min
temperature program	35°C (2 min) \rightarrow 310 °C (30 min) at 3°C/min
transfer line temperature	280°C
Mass spectrometer	MSD 5977A (Agilent)
ionization energy	70 eV
scan rate	2.48 scans/s
scan range	50-650 amu

Table S1	Conditions for P	olysis-GCMS/Thermochemol	ysis measurements
----------	------------------	--------------------------	-------------------

Table S2 List of polymers and their respective specific indicator ions

Dehrmen	Abbre-	Characteristic decomposition product(s)	RI ^a	Μ	Indicator ions
Polymer	viation	characteristic decomposition product(s)		(<i>m/z</i>)	(<i>m/z</i>)
		Alkanes (e.g. C ₂₀)	2000	282	85
Polyethylene	PE	lpha-Alkenes (e.g. C20)	1994	280	83
		α,ω-Alkenes (e.g. C20)	1987	278	82
		2,4-Dimethylhept-1-ene	832	126	126, 70
Delverendene		2,4,6,8-Tetramethyl-1-undecenes ^b	1306	210	100, 69
Polypropylene	PP	2,4,6,8-Tetramethyl-1-undecenes ^c	1315	210	100, 69
		2,4,6,8-Tetramethyl-1-undecenes ^d	1323	210	100, 69
		Styrene	890	104	104
Polystyrene	PS	2,4-Diphenyl-1-butene	1720	208	91
		2,4,6-Triphenyl-1-hexene	2440	312	91
Polyvinyl		Benzene	738	78	78
chloride	PVC	Chlorobenzene	840	112	112
Poly(methyl		Methylacrylate	726	86	55
methacrylate)	PIVIIVIA	Methyl methacrylate	775	100	100 , 69
Delverside	DAC	ε-Caprolactam	1257	113	113
Polyamide	PAO	N-methyl caprolactam ^e	1224	127	127
Polyethylene terephthalate	PET	Dimethyl terephthalate ^e	1504	194	163
Dolycarbonato	DC	<i>p</i> -Methoxy-tert-butylbenzene ^e	1240	242	149, 164
Polycalbollate	FC	2,2-Bis(4'-methoxy-phenyl)propane ^e	2065	256	256 , 241
		4,4'-Methylenbis(N-methylaniline) ^e	2330	226	226
MDI- Polyurethane	MDI-PUR	N,N-Dimethyl-4-(4- methylamino)benzylanilin ^e	2341	240	240
		4,4'-Methylenbis(<i>N</i> , <i>N</i> -dimethylaniline) ^e	2354	254	253, 254

^a RI = Retention index calculated after Van Den Dool 1963, DB-5 column; M = molecular ion, m/z = mass to charge ratio; ^b Isotactic.

^c Heterotactic. ^d Syndiotactic. ^e Only after TMAH treatment; bold: indicator ions used for calibration

Polymer Standards

Polymer standard	Abbre- viation	Characteristics	Use (examples)	Source of supply
Polyamide 6 (K891), Akulon [®] K222-D	PA6	Low viscosity	Consumer durables, convoluted tubes	Ter Hell GmbH, Hamburg, Germany
Polycarbonate, Makrolon 2558	РС	SM (solvent method) PC	Households products/ Consumer Goods (Toys),	Bayer Material Science
Polyethylene, Lupolen 4261 AG UV	HDPE	High density	injection molding	LyondellBasell
Polyethylentereph- thalate, NEOPET 80	PET			Neogroup
Polymethylmeth-acrylate, PLEXIGLAS [®] 7N	PMMA	Thermoplast	Optical waveguides	Plexiglas
Polypropylene, HL508FB	РР	Homopolymer, isotactic	for medical devices, secondary packaging, infusion bags	Borealis
Polystyrene, TOTAL PS impact 7240	PS	High impact PS for extrusion industry	Dairy sheets, dairy pots	Ter Hell GmbH, Hamburg, Germany
Polystyrene, Styrolution PS 158N/L	PS	Raw material	Packaging material, foams	IINEOS Styrosolution
Polyurethane	PUR	MDI - Thermoplast		GEBA
Polyvinylchloride, Vinnolit S 3268	PVC	Hard PVC, raw material	Extruding mass	Vinnolit

Table S3Table of all plastic standards used for quantification.

Table S4Indicator compounds and indicator ions used for quantification with S/N-ratio of the
smallest calibration point.

Polymer	Indicator compound used for	Indicator ion	low. calibration point	S/N
	quantification	m/z	μg	
PE	<i>n</i> -C ₁₆₋₂₆ -alkadienes	82	0.5	>83
PP	2,4-Dimethylhept-1-ene	70	0.3	478
PET	dimethyl terephthalate	163	0.6	32
PS	2,4,6-Triphenyl-1-hexene	91	0.8 0.01 (LOD 0.03)*	38
PVC	benzene	78	0.3	167
PC	dimethyl bisphenol-A	241	0.9	inf
PMMA	methyl methacrylate	100	0.8	392
PA6	ε-Caprolactame + <i>N</i> -Methyl-Caprolactame	113 + 127	0.5	30
PUR	4,4'-Methylenbis (N,N-dimethylaniline)	254	1.4	94

*LOD calculated from dissolved PS

Text section S1

Calibration and internal standardization of the pyrolysis process. Py-GCMS measurements of the samples were conducted in different measurement campaigns. For each measurement campaign a new calibration was performed (cf. Table S5a-i). The internal standardization of the pyrolytic process was successively developed and adapted during these measurement campaigns. Firstly, anthracened¹⁰ and androstane were added. In the following the polar cholanic acid, which acid-group will be methylated during the performed on-line derivatization and 9-Dodecyl-1,2,3,4,5,6,7,8-octahydro anthracene (DOHA), which has aromatic as well as aliphatic features and is not plain as anthracene-d10 were added to the mixture. In the last measurement campaigns the relatively poor performing anthracene-d¹⁰ and androstane were replaced with 9-Tetradecyl-1,2,3,4,5,6,7,8-octahydro anthracene (TOHA), which is very similar to DOHA and was added in lower concentrations (0,01 μ g/ μ L in *n*-hexane instead of 0,02 μ g/ μ l).

Text section S2

Process standard deviation. The process standard deviation s_{x0} is an absolute quality criterion of the precision of an analytical process. It is calculated by dividing the residual standard deviation of a linear regression with the slope (Reichenbächer and Einax, 2011).

$$s_{x0} = \frac{\sqrt{\frac{1}{n-2}(Q_{yy} - \frac{Q_{xy}^2}{Q_{xx}})}}{b}$$

- S_{x0} process standard deviation
- *n* number of calibration points
- Q Sum of Squares
- b slope

a Calibration	parame					
CP-Py-GCMS		Area				
	m	3.21E+05				
	b	-5.03E+06				
	r^2	0.9				
	<i>S</i> _{x0}	22.4				
	n	7				
MF-Py-GCMS		Area				
(Sediment A & B)	m	-9.18E+04				
	b	1.46E+05				
	<i>r</i> ²	0.97				
	S _{x0}	5.1				
	n	10				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	8.13E+04			-5.01E-03	3.82E-02
	b	-2.39E+03			1.24E-02	3.67E-02
	r^2	0.87			0.59	1.00
	<i>S</i> _{x0}	6.2			13.2	0.8
	n	4			4	4
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	2.16E+04	2.12E-02	2.76E-02	1.20E+00	-3.50E-01
	b	6.65E+04	3.36E-02	-2.03E-02	1.36E-01	2.68E-01
	r ²	0.97	0.98	0.99	0.73	0.98
	S _{x0}	2.9	2.1	1.3	9.8	2.0
	n	6	6	6	6	6
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-1.08E+05	-1.13E-01	2.47E-02	2.77E+00	1.28E+00
	b	1.27E+05	7.44E-02	5.08E-02	7.19E-02	1.86E-01
	<i>r</i> ²	0.999	0.996	0.99	0.07	0.55
	S _{x0}	0.5	1.4	1.5	75.9	18.9
	n	4	4	4	4	4
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	3.32E+04	-1.74E-02	-2.67E-02	-8.32E-03	
	b	-4.69E+02	1.82E-02	1.29E-02	1.98E-02	
	r ²	-0.22	0.95	0.98	0.96	
	S _{x0}	70.0	5.2	3.4	4.6	
	n	7	7	7	7	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	-2.55E+05	1.45E-02	4.51E-02	-7.42E-02	
	b	1.15E+05	4.12E-02	3.53E-02	6.55E-02	
	<i>r</i> ²	0.99	0.99	0.999	0.9998	
	<i>S</i> _{x0}	1.5	1.6	0.5	0.3	
	n	4	4	4	4	

Table S5 aCalibration parameter PE

	- p a. a e.					
CP-Py-GCMS		Area				
	m	8.35E+04				
	b	7.07E+03				
	r ²	0.96				
	S _{x0}	32				
	n	17				
MF-Py-GCMS		Area				
(Sediment A & B)	m	1.07E+06				
	b	3.04E+05				
	r^2	0.99				
	S _{x0}	3.5				
	n	10				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	1.83E+06			-3.75E-01	3.54E-01
	b	-8.58E+04			1.04E-01	3.21E-01
	r ²	0.88			0.95	0.42
	S _{x0}	2.7			0.6	12.9
	n	5			5.00	5.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	2.19E+05	1.77E-01	1.07E-01	5.56E+00	-8.64E-01
	b	2.57E+05	1.30E-01	-1.90E-02	5.28E-01	1.04E+00
	r ²	0.99	0.99	0.99	0.72	0.98
	S _{x0}	2.1	2.0	2.3	11.8	2.9
	n	6	6	6	6	6
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	3.55E+04	-1.07E-01	1.53E-01	4.53E+00	2.52E+00
	b	3.08E+05	1.79E-01	1.25E-01	3.17E-01	5.23E-01
	r^2	0.999	0.99	0.999	0.19	0.62
	S _{x0}	0.8	2.2	0.7	42.0	15.6
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	ТОНА	
(Sediment D)	m	6.86E+05	-1.37E-01	-3.33E-01	8.95E-02	
	b	-1.09E+04	2.95E-01	2.06E-01	3.20E-01	
	r ²	0.09	0.90	0.96	0.91	
	S _{x0}	54.0	5.5	3.2	5.2	
	n	7	7	7	7	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	-6.28E+05	-3.70E-02	-4.68E-02	-2.75E-01	
. ,	b	3.73E+05	1.39E-01	1.23E-01	2.18E-01	
	r ²	0.99	0.99	0.996	0.996	
	S _{x0}	1.5	1.9	1.0	1.0	
	n	6	6	6	6	

Table S5 bCalibration parameter PP

CP-Py-GCMS		Area				
	m	2.99E+07				
	b	2.07E+06				
	<i>r</i> ²	0.9				
	S _{x0}	31				
	n	12				
MF-Py-GCMS		Area				
(Sediment A & B)	m	9.82E+05				
	b	2.08E+06				
	r^2	0.9671				
	S _{x0}	2.0				
	n	8				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	2.49E+06			-2.13E+00	-7.68E-01
	b	-4.40E+04			6.58E-01	1.21E+00
	<i>r</i> ²	0.05112			0.97531	0.89557
	S _{x0}	49.0			1.8	3.2
	n	6.00			6.00	6.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	-2.43E+06	-8.03E-01	6.94E-01	6.27E+00	-4.01E+00
	b	2.08E+06	1.01E+00	-4.22E-01	5.47E+00	6.33E+00
	<i>r</i> ²	0.95	0.97	0.99	0.8	0.97
	S _{x0}	1.8	1.4	0.7	3.9	1.2
	n	6	6	6	6	6
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	1.64E+06	6.83E-01	9.60E-01	4.58E-01	2.33E+00
	b	1.65E+06	9.17E-01	6.92E-01	4.31E+00	4.34E+00
	r^2	0.98	0.99	0.97	0.38	0.59
	S _{x0}	1.2	0.8	1.5	10.3	6.7
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	3.92E+05	-5.56E-01	-4.85E-01	-5.23E-01	
	b	-9.97E+03	4.35E-01	3.00E-01	4.88E-01	
	<i>r</i> ²	0.02	0.984	0.975	0.931	
	S _{x0}	39.6	0.8	1.0	1.7	
	n	6	6	6	6	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	2.89E+05	6.06E-01	3.71E-01	2.53E-01	
. ,	b	1.51E+06	5.79E-01	5.29E-01	9.10E-01	
	r^2	0.998	0.93	0.95	0.98	
	<i>S</i> _{x0}	0.3	1.8	1.5	0.9	
	n	6	6	6	6	

 Table S5 c
 Calibration parameter PET

	i parame	ler r J				
CP-Py-GCMS		Area				
	m	-1.27E+05				
	b	3.61E+04				
	r ²	0.95				
	S _{x0}	46				
	n	18				
MF-Py-GCMS		Area				
(Sediment A & B)	m	-8.59E+06				
	b	1.45E+06				
	r ²	0.95115				
	S _{x0}	6.5				
	n	9				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	-1.64E+05			-1.32E+00	-3.34E+00
	b	5.85E+04			6.49E-01	1.27E+00
	r ²	0.99			0.99985	0.99593
	S _{x0}	1.5			0.2	1.1
	n	4.00			4.00	4.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	-1.34E+05	-2.70E-01	-2.08E-01	4.88E+00	2.90E+00
	b	6.98E+05	4.13E-01	2.98E-01	5.71E-01	1.07E+00
	r ²	0.95	0.96	0.95	0.18	0.7
	S _{x0}	1.6	1.5	1.7	15.9	4.9
	n	8	8	8	8	8
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	2.61E+05	-1.17E-01	1.94E-01	3.83E+00	2.78E+00
	b	7.14E+05	3.65E-01	2.71E-01	4.64E-01	1.51E+00
	r ²	0.9468	0.89117	0.95364	0.17932	0.57313
	S _{x0}	2.0	2.9	1.8	17.8	7.2
	n	7	7	7	7	7
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	6.56E+05	-6.85E-01	-8.00E-01	-5.33E-01	
	b	-1.68E+04	7.14E-01	5.12E-01	7.77E-01	
	r ²	0.03	0.99	0.96	0.97	
	S _{x0}	43.1	0.8	1.6	1.4	
	n	6	6	6	6	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	5.24E+04	1.30E-01	1.13E-01	6.53E-02	
. ,	b	4.04E+05	1.47E-01	1.30E-01	2.35E-01	
	r ²	0.96	0.98	0.95	0.97	
	S _{x0}	1.8	1.4	1.6	1.6	
	n	5	5	5	5	
		5	5	5	5	

Table S5 dCalibration parameter PS

	paramet					
CP-Py-GCMS		Area				
	m	1.20E+06				
	b	2.55E+04				
	<i>r</i> ²	0.94				
	S _{x0}	92				
	n	29				
MF-Py-GCMS		Area				
(Sediment A & B)	m	-1.16E+06				
	b	2.44E+05				
	r^2	0.96548				
	S _{x0}	6.3				
	n	6				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	1.01E+06			-7.31E-01	4.60E-01
	b	4.10E+03			2.37E-01	4.26E-01
	r ²	0.25997			0.99534	0.99987
	S _{x0}	61.1			2.5	0.4
	n	4.00			4.00	4.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	3.64E+05	2.07E-01	6.79E-03	4.57E+00	-5.90E-01
	b	1.78E+05	9.00E-02	7.56E-02	3.46E-01	7.40E-01
	r ²	0.88	0.92	0.98	0.6	0.98
	S _{x0}	6.7	5.5	2.6	14.9	2.6
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-5.11E+05	-5.44E-01	-2.23E-01	1.87E+00	1.71E+00
	b	2.45E+05	1.39E-01	9.85E-02	1.81E-01	4.08E-01
	r ²	0.98701	0.95799	0.98391	0.17725	0.61151
	S _{x0}	2.1	3.7	2.3	38.7	14.3
	n	7	7	7	7	7
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	3.52E+05	8.21E-02	3.15E-03	1.32E-01	
	b	-4.68E+03	8.96E-02	6.66E-02	9.62E-02	
	r ²	0.06	0.98	0.99	0.99	
	S _{x0}	78.0	2.8	2.0	1.5	
	n	5	5	5	5	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	7.60E+05	5.04E-01	3.91E-01	5.12E-01	
	b	1.53E+05	5.35E-02	4.86E-02	8.87E-02	
	r^2	0.97	0.79	0.82	0.91	
	S _{x0}	3.5	10.0	9.0	6.2	
	n	5	5	5	5	

Table S5 eCalibration parameter PVC

	n purunt					
CP-Py-GCMS		Area				
	m	1.24E+07				
	b	1.64E+06				
	r ²	0.95689				
	S _{x0}	8.0				
	n	14				
MF-Py-GCMS		Area				
(Sediment A & B)	m	4.08E+07				
	b	3.60E+06				
	r ²	0.93072				
	S _{x0}	9.4				
	n	6				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	1.65E+07			-9.62E+01	-6.34E+01
	b	6.00E+05			1.11E+01	2.10E+01
	r ²	0.36269			0.95789	0.86122
	S _{x0}	30.51			4.80	9.20
	n	6.00			6.00	6.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	5.30E+06	2.67E+00	-3.32E+00	1.09E+01	-4.07E+01
	b	-4.52E+06	-1.83E+00	2.23E+00	2.89E+01	2.20E+01
	r ²	0.98	0.99	0.97	0.7	0.95
	S _{x0}	0.7	0.4	1.0	3.7	1.2
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-6.24E+05	-1.11E+00	5.91E-01	1.63E+01	8.28E+00
	b	3.53E+06	2.04E+00	1.42E+00	4.82E+00	6.68E+00
	r ²	0.99699	0.98632	0.97716	0.18812	0.53068
	S _{x0}	0.36	0.77	0.99	13.5	6.11
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	1.38E+06	-3.01E+00	-1.58E+00	-4.84E+00	
	b	6.30E+05	3.29E+00	1.98E+00	4.50E+00	
	r ²	0.52	0.86	0.88	0.81	
	S _{x0}	3.6	1.48	1.4	1.8	
	n	5	5	5	5	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	-2.48E+06	6.74E-01	3.66E-01	-8.82E-01	
	b	5.47E+06	2.07E+00	1.84E+00	3.24E+00	
	r^2	0.99	0.97	0.96	0.99	
	S _{x0}	0.76	1.14	1.25	0.76	
	n	6	6	6	6	

Table S5 fCalibration parameter PC

CP-Py-GCMS		Area				
	m	3.96E+05				
	b	1.97E+05				
	r ²	0.9				
	S _{x0}	14				
	n	22				
MF-Py-GCMS		Area				
(Sediment A & B)	m	1.69E+06				
	b	7.09E+05				
	r ²	0.93459				
	S _{x0}	9.28				
	n	7				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	3.08E+04			-2.11E+00	1.57E+01
	b	1.05E+05			1.22E+00	3.34E+00
	r ²	0.99824			0.99769	0.53836
	S _{x0}	1.25			1.40	27.50
	n	5.00			5.00	5.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	-1.37E+06	-7.13E-01	-7.74E-01	-1.17E+01	2.87E+00
	b	7.11E+05	3.65E-01	2.92E-01	3.86E+00	-8.70E+00
	r ²	0.97	0.97	0.92	0.53	0.92
	S _{x0}	1.2	1.3	2.3	7.3	2.4
	n	6	6	6	6	6
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-1.74E+06	-1.07E+00	-4.71E-01	4.26E+00	6.08E-01
	b	6.06E+05	3.86E-01	2.40E-01	4.09E-01	8.92E-01
	r^2	0.9235	0.99976	0.92619	0.2298	0.8797
	S _{x0}	3.06	0.199	3	19.45	3.93
	n	5	5	5	5	5
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	1.24E+06	-7.59E+00	-4.36E+00	-8.49E+00	
	b	1.53E+03	2.14E+00	1.25E+00	2.49E+00	
	r ²	0.00	0.89	0.89	0.85	
	S _{x0}	478.8	1.94	1.89	2.3	
	n	5	5	5	5	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	-1.45E+06	-3.32E-01	-3.22E-01	-7.79E-01	
	b	9.51E+05	3.51E-01	3.09E-01	5.54E-01	
	r^2	0.99	0.99	0.998	0.996	
	S _{x0}	0.88	0.95	0.49	0.63	
	n	5	5	5	5	

Table S5 gCalibration parameter PMMA

CP-Py-GCMS		Area				
	m	-5.03E+06				
	b	3.21E+05				
	r ²	0.86				
	S _{x0}	22.4				
	n	7				
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	1.32E+06			4.29E-02	2.20E+00
	b	1.28E+04			5.41E-02	2.10E-01
	r ²	0.00229			0.90371	0.21022
	S _{x0}	207.10			3.24	19.25
	n	5.00			5.00	5.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	-2.21E+05	-1.47E-02	-3.32E-01	7.80E+00	-4.52E+00
	b	3.87E+05	1.95E-01	1.65E-01	7.43E-01	1.61E+00
	r ²	0.99	0.99	0.99	0.8	0.98
	S _{x0}	2.1	1.0	1.9	9.1	2.7
	n					
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-4.84E+05	-1.34E+00	-2.35E-01	8.43E+00	8.99E+00
	b	5.87E+05	3.51E-01	2.38E-01	3.81E-01	8.47E-01
	r ²	0.99676	0.96243	0.98517	0.10368	0.54054
	S _{x0}	1.03	3.58	2.23	53.33	16.72
	n	6	6	6	6	6
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	ТОНА	
(Sediment D)	m	-6.65E+04	-5.23E-03	-1.84E-02	3.22E-02	
	b	1.64E+04	2.60E-02	1.82E-02	2.75E-02	
	r ²	0.34	0.97	0.96	0.87	
	S _{x0}	28.93	3.69	3.98	7.9	
	n	5	5	5	5	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	ТОНА	
(Seawater)	m	-7.76E+05	-4.16E-02	-3.35E-02	-3.20E-01	
	b	4.62E+05	1.72E-01	1.51E-01	2.69E-01	
	r ²	0.99	0.99	0.997	0.997	
	S _{x0}	1.65	1.94	1.22	1.26	
	n	6	6	6	6	

Table S5 hCalibration parameter PA6

	•					
MF-Py-GCMS	ISTDpy	Area			Anthr.	Andros.
(Sediment C)	m	3.84E+03			-1.79E-03	-4.84E-02
	b	1.88E+01			1.74E-03	9.84E-03
	<i>r</i> ²	0.61128			0.84908	0.77053
	S _{x0}	16.47			8.70	11.30
	n	4.00			4.00	4.00
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt I)	m	2.05E+04	1.04E-02	8.69E-03	4.00E-02	-2.68E-01
	b	-2.49E+04	-1.02E-02	-2.17E-02	3.27E-01	8.50E-02
	r ²	0.96	0.98	0.96	0.72	0.95
	S _{x0}	3.2	2.4	3.3	10.1	3.8
	n	5	5	5	5	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	Anthr.	Andros.
(Salt II)	m	-4.61E+04	-5.94E-02	1.12E-02	1.33E+00	7.00E-01
	b	6.08E+04	3.56E-02	2.44E-02	4.20E-02	9.17E-02
	r ²	0.9849	0.99328	0.97752	0.07484	0.46527
	S _{x0}	2.27	1.77	3.27	75.68	23.1
	n	4	4	4	4	4
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Sediment D)	m	9.11E+04	-9.59E-01	-7.77E-01	-9.65E-01	
	b	-1.44E+03	9.88E-02	7.33E-02	1.07E-01	
	r ²	0.09	0.98	0.97	0.97	
	S _{x0}	57.3	2.4	3	3.4.	
	n	4	4	4	4	
MF-Py-GCMS	ISTDpy	Area	Cholan.	DOHA	TOHA	
(Seawater)	m	2.31E+04	4.51E-02	5.27E-02	3.82E-02	
	b	2.37E+04	8.01E-03	6.84E-03	1.32E-02	
	r ²	0.92	0.85	0.84	0.91	
	S _{x0}	5.28	7.37	7.70	5.78	
	п	4	4	4	4	

Table S5 iCalibration parameter PUR

Table S6

MP contents in the analysed samples

	PE	PP	PET	PS	PVC	PC	PMMA	PA6	PUR
	ТОНА	тона	DOHA	-	тона	-	DOHA	-	-
seawater	4.3	1.9	1.4	<lod< td=""><td>5.8</td><td><lod< td=""><td>5.8</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	5.8	<lod< td=""><td>5.8</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	5.8	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	Area	Area	Area	-	Area	-	Area	-	-
seawater	5.1	2.3	1.8	<lod< td=""><td>6.5</td><td><lod< td=""><td>5.9</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	6.5	<lod< td=""><td>5.9</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	5.9	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	DOHA	DOHA	DOHA	DOHA	-	-	-	-	DOHA
salt I	2.0	19.6	0.7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.7</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2.7</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2.7</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2.7</td></lod<></td></lod<>	<lod< td=""><td>2.7</td></lod<>	2.7
salt II	9.8	26.6	4.1	0.5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	Area	Area	Area	Area	Area	Area	Area	Area	Area
salt I	1.7	19.8	1.3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>1.3</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>1.3</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>1.3</td></lod<></td></lod<>	<lod< td=""><td>1.3</td></lod<>	1.3
salt II	13.3	29.3	5.9	0.1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	Area	Area	Area	Area	Area	Area	Area	Area	Area
sediment A	18.5	<lod< td=""><td>14.5</td><td>7.4</td><td><lod< td=""><td><lod< td=""><td>13.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	14.5	7.4	<lod< td=""><td><lod< td=""><td>13.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>13.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	13.1	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
sediment B	26.6	<lod< td=""><td>5.0</td><td>19.3</td><td>10.7</td><td><lod< td=""><td>6.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	5.0	19.3	10.7	<lod< td=""><td>6.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	6.1	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	Andros.	-	Anthr.	Anthr.	Anthr.	Andros.	Anthr.	-	-
sediment C	23.5	12.5	0.2	5.0	7.2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	DOHA	DOHA	DOHA	DOHA	DOHA	DOHA	DOHA	-	-
sediment D	29.9	11.5	11	13.2	80.9	0.9	19.5	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
racene-d ¹⁰ ; Andros	s. = Androsta	ane; Chola	n. = Chola	nic acid m	ethyl ester	, DOHA = 9-	dodecyl-1,	2,3,4,5,6,	7,8-Octa

Anthr. = Anthracene-d²⁰; Andros. = Androstane; Cholan. = Cholanic acid methyl ester, DOHA = 9-dodecyl-1,2,3,4,5,6,7,8-Octa anthracene; TOHA = 9-Tetradecyl-1,2,3,4,5,6,7,8-octahydro anthracene

Figure S2 MDI-PUR; a) pyrogram (TIC) of direct pyrolysis and b) pyrogram (TIC and selected ion chromatograms) of thermochemolysis of selected indicator compounds; c) table of characteristic pyrolysis products with d) mass spectra of these products.

Figure S3 Examples of calibration curves of CP-PyGCMS (black squares) and MF-PyGCMS (red dots) with higher polymer amounts outside the linearity range

Figure S4Preconcentrated samples on glass fibre filters: a) salt sample, b) seawater sample, c)
sediment sample.

Figure S5 Example of calibration curve (PET) for evaluation of sediments without addition of ISTD_{py}, sediment sub-samples are visualized by red dots and blue triangles.

References

Reichenbächer, M., Einax, J.W., 2011. Challenges in Analytical Quality Assurance. Springer, Berlin Heidelberg. doi:DOI 10.1007/978-3-642-16595-5