Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A fluorescent probe for specific detection of cysteine and application in human serum

Zhen Huang, Cuiyan Wu, Yaqian Li, Zile Zhou, Ruihua Xie, Xiao Pang, Hai Xu, Haitao Li,* and Youyu

Zhang

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education),

College of Chemistry and Chemical Engineering,

Hunan Normal University, Changsha 410081, PR China

^{*}Corresponding author. Tel: +86-751-88865515; Fax: +86-731-88872531.

E-mail address: haitiao-li@hunnu.edu.cn.

Fig. S1. ¹H NMR spectra of probe 1 in CDCl₃

Fig. S2. HRMS spectrum of probe 1.

Molar absorption coefficient

The molar absorption coefficients of probe 1 in the presence or abscence of Cys are calculated according to the formula $\varepsilon = A/bc$. Where ε is the molar absorption coefficient, A is the absorbance of free probe 1, and probe 1 in the presence of 200 μ M Cys, respectively (the absorbance at 355 nm is used in the paper to calculate ε), b is the thickness of the cuvette (1 cm⁻¹) and c is the solution concentration (10 μ M).

Quantum yield measurements

Quinine sulfate in a 0.1 M H_2SO_4 aqueous solution (quantum yield is 0.54) as references. The QY_s were determined by comparing the integrated fluorescence intensity and the absorbance value of the probe 1 samples with those of the references. The absorbances (less than 0.05 at the excitation wavelength) at 355 nm for probe 1, probe 1 and Cys response solution, and quinine sulfate were recorded, respectively. The slope method was used to calculate the QY_s using the equation:

$$QY_u = QY_s (m_u/m_s) (n_u/n_s).$$

Where QY is the quantum yield, m is the slope determined by the curves. And n is the refractive index (1.33 for $0.1 \text{ M H}_2\text{SO}_4$ aqueous solution and 1.36 for anhydrous ethanol at room temperature). The subscript "s" refers to the standards and "u" refers to the unknown samples. A series of concentrations for the references and the required samples were measured to obtain the slopes.

Fig. S3. Absorption spectra of probe (10 μ M, black line) and the reaction mixture (red line, blue line and orange line) of 10 μ M probe with 200 μ M Cys, Hcy or GSH in DMF/phosphate buffer (1:1 v/v, 10 mM, pH 7.4).

Fig. S4. Fluorescence spectra of probe (10 μ M, black line) and the reaction mixture (red line, blue line and orange line) of 10 μ M probe with 200 μ M Cys, Hcy or GSH in DMF/phosphate buffer (1:1 v/v, 10 mM, pH 7.4). $\lambda_{ex} = 355$ nm, Slits:5/5 nm.

Fig. S5. HRMS spectrum of probe 1 and Cys reaction mixture.

Fig. S6. The color changes of probe 1 (10 μ M) upon addition of different concentrations of Cys in DMF/PBS buffer (1:1, v/v, 10 mM, pH 7.4).

Fig. S7. The color changes of probe **1** (10 μM) with various analytes (200 μM). The pictures were recorded at 50 min after addition of the analytes 1-30 (CaCl₂, MgCl₂, ZnCl₂, FeCl₂, FeCl₃, AlCl₃, MnCl₂, VC, Glc, Fru, Gly, Ala, Met, Thr, Lys, Asp, Glu, Pro, Ser, NAC, Na₂SO₄, NaHS, EtSH, PhSH, *n*-C₄H₉NH₂, PhNH₂, Hcy, GSH, Cys, Blank.)