Instant detection of cyanide in seafood with a tryptophan based fluorescence probe

Joydev Hatai,^a Sk. Atiur Rahaman,^b Debdeep Dasgupta,^b and Subhajit Bandyopadhyay*^b

^aInstitute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany, <u>joydev.hatai@uni-due.de</u>. ^bIndian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, WB, India. <u>sb1@iiserkol.ac.in</u>

CONTENTS

1. Experimental details	S2-S3
Figure S1. ESI mass spectrum of compound 1	
¹ H and ¹³ C NMR spectra of compound 1	S4–S5
Figure S4. Ratiometric behavior of 1 with CN^{-}	S6
Figure S5. Ratiometric behavior of 1 with SH ⁻	S6
Figure S6. Time dependence fluorescence change	
Figure S7. Job's plot	
Figure S8. ¹ H NMR chemical shift of chemodosimeter 1	S8
Figure S9. ESI-MS isotopic distribution of 1 with TBA CN	S8
Figure S10. Determination of detection limit	S9
2. Determination of cyanide in HeLa S3	S9
Figure S11. Confocal laser scanning microscopic images	S10
3. Visual detection of cyanide in shellfish	S10
Figure S12. Image of fish under visible and 366 nm light	S11
4. Detection of cyanide in gel samples	S11
5. Detection of cyanide: Paper based strip approach	S11
Table S1. Comparison data of the reported literature	
Figure S13. Optimised structurs	
6. DFT computational results	S14-S17

1. Experimental details

Synthesis

Scheme S1. Synthetic scheme of probe 1

Compound 2^1 and compound 3^2 were prepared following the reported method and compound 1 was synthesized following the reported method of bipodal thiocarbamate synthesis.³

dimethyl 2,2'-(((((5-formyl-4-hydroxy-1,3-phenylene) bis(methylene)) bis(sulfanediyl)) bis(carbonothioyl))bis(azanediyl))bis(3-(1H-indol-3-yl)propanoate) (1)

Methyl-2-amino-3-(1H-indol-3-yl)propanoate (0.1 g, 0.459 mmol) and K₂CO₃ (0.13 g, 0.918 mmol) in dioxane/water (1:4, v/v) was stirred for 5 minutes at 0 °C. Carbon disulfide (1.39 g, 1.10 mL, 18.36 mmol) was added and the mixture was stirred for another 5 minutes. 3,5-*bis*(bromomethyl)-2-hydroxybenzaldehyde (0.07 g, 0.229 mmol) dissolved in dioxane was subsequently added to it dropwise over a period of 10 minutes. The solution was allowed to attain room temperature (25 °C) and stirred for another 60 minutes. The yellowish solution thus obtained was concentrated under reduced pressure and the residue was dissolved in dichloromethane (20 mL). The organic layer was washed with H₂O (20 mL), dried over anhydrous Na₂SO₄ and the volatiles were removed under reduced pressure, which on chromatography (CH₂Cl₂/CH₃CN, 19:1, v/v) yielded compound **1** as a white solid (0.17 g, 51%); mp 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ : 11.25 (s, 1H, ArOH), 9.59 (s, 1H, ArCHO), 8.22 (s, 1H, ArNH), 8.16 (s, 1H, ArNH), 7.65-7.64 (m, 1H, ArH), 7.52-7.48 (m, 2H, ArH), 7.46-7.40 (m, 2H, ArH), 7.32-7.25 (m, 3H, ArH), 7.17-7.14 (m, 2H, ArH), 7.09-7.01 (m, 2H, ArH), 6.83 (s, 2H, ArH), 5.51-5.48 (m, 2H, CHCO₂Me), 4.38-4.31 (m, 4H, ArCH₂), 3.67 (s, 3H, CO₂Me), 3.66 (s, 3H, CO₂Me), 3.58 (d, *J* = 5.36, 1H, CH₂CH). ¹³C NMR (125 MHz, CDCl₃) δ :

197.0, 196.7, 196.2, 171.2, 158.3, 138.1, 135.9, 133.2, 127.9, 127.3, 125.5, 123.1, 123, 122.2, 119.8, 119.7, 118.4, 118.3, 111.4, 111.2, 109.1, 108.9, 66.9, 59.4, 52.6, 38.4, 32.6, 26.5. λ_{abs} in CH₃CN (nm, ε): 270 (1×10⁵), 340 (5916), 400 (910). FT–IR (KBr, cm⁻¹): 3362, 3401, 2958, 2923, 1733, 1649, 1457, 1339, 1213, 772, 744. ESI-MS calculated for C₃₅H₃₄N₄O₆S₄K⁺ 734.0998, found 734.0997.

Figure S1. ESI mass spectrum of the compound 1.

Figure S2. ¹H NMR spectrum of chemosensor 1 in CDCl₃.

Figure S3. ¹³C NMR spectrum of chemodosimeter of 1 in CDCl₃.

Figure S4. (A) Emission spectra of **1** (10 μ M) with increasing concentration of CN⁻; (B) Ratiometric behavior of **1** (10 μ M) with an increasing concentration of CN⁻ (0 to 150 μ M) in mixed organic–aqueous media (CH₃CN/H₂O, 5:1, v/v).

Figure S5. (A) UV-vis response of **1** (10 μ M) upon addition of SH⁻ (150 μ M) in mixed media (CH₃CN/H₂O, 5:1); (B) Emission spectra of **1** (10 μ M) with increasing concentration of SH⁻; (C) Ratiometric behavior of **1** (10 μ M) with an increasing concentration of SH⁻ (0 to 150 μ M) in mixed organic–aqueous media (CH₃CN/H₂O, 5:1, v/v).

Figure S6. Time dependence fluorescence change of chemosensor $1(10 \ \mu\text{M})$ in presence of CN⁻ (60 μM) in mixed solvent media.

Figure S7. Job's plot of **1** with CN^- in mixed organic–aqueous media (CH₃CN/H₂O, 5:1, v/v). The total concentration of chemosensor and CN^- kept constant at 8 μ M.

Figure S8. ¹H NMR chemical shift of chemodosimeter **1** (10 mM) upon addition of CN^{-} (TBA–CN) in CD₃CN.

Figure S9. ESI-MS isotopic distribution of the $C_{52}H_{71}N_6O_6S_4$ (1-CN + TBA⁺) fragment. The simulated distribution is given in the inset.

Figure S10. Determination of detection limit of chemodosimeter **1** (10 μ M) from fluorescence titration in mixed solvent medium (CH₃CN/H₂O, 5:1, v/v) at 25 °C. The detection limit of chemosensor is 77 nM.

2. Determination of cyanide in HeLa S3

Chemosensor **1** was used for the detection of CN⁻ ion in cells with a fluorescence imaging experiment by using a confocal laser scanning microscope (CLSM). Human epithelial carcinoma cells HeLa S3 were cultured at 37° C in Dulbecco's Modified Eagle's Medium (DMEM), supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin,100 µg/mL streptomycin and 5% CO₂. Cells (0.2×10^6 per mL) were plated on 12 mm sterile cover-slips and were allowed to adhere for 24 h. The cultured cells were first exposed to cyanide (CN⁻) (40 µM) dissolved in DMEM for 30 min at 37 °C. The cells were washed twice with PBS to remove the retained CN⁻ ions followed by incubation with dye **1** (10 µM in DMSO) in PBS for 5 min at 25 °C. After incubation, cells were washed twice with PBS to remove residual dye and fixed with 4% paraformaldehyde for 10 minutes. The cells fixed on the cover-slips were washed once and mounted on glass slide and observed under microscope.⁴ The slides were observed under Carl Zeiss CLSM-710 (Axio observer microscope version Z.1) microscope using 405 nm excitation argon laser with MBS (main beam splitter) and the observed emission ranged from 515–540 nm. The image acquisition was done under X40 oil immersion lens (NA: 1.3). The frame size of 512 × 512 (8-bit image) was maintained using the

software provided (Zen 2010) along with the microscope. The fluorescence imaging obtained by CLSM revealed marked differences in intensity of intracellular fluorescent of CN^- strained cells compare to the controls. The fluorescence image of HeLa S3 treated with **1** (Figure 1B, iii) under the same conditions showed weak intercellular fluorescence. In contrast, cells treated with both CN^- and dye showed a vivid intercellular fluorescence (Figure 1B, iv). Thus, chemosensor **1** can be used to detect the intracellular CN^- .

Figure S11. Confocal laser scanning microscopic images of HeLa S3: (A) DIC image; (B) corresponding fluorescent images of (i) Only cells; (ii) Cells treated with cyanide salt (40 μ M) for 30 min; (iii) Cells treated with dye (10 μ M) for 5 min at 37 °C; (iv) Cells treated with cyanide salts (40 μ M) for 30 min at 37 °C followed by dye (10 μ M) for 5 min at 25 °C. Images are representative of two independent experiments.

3. Visual detection of cyanide in shellfish

Chemosensor 1 was used for the detection of cyanide in the adult shellfish. The adult shrimps were treated with aqueous solution of CN^{-} (100 µM) for 1 h at 25 °C followed by washed with PBS to remove any CN^{-} ion adhering to the surface, and were subsequently treated with a solution of dye 1 (100 µM) for 30 min followed by washed with PBS and observed under 366 nm light. The visual images taken with a digital camera (Figure 7) shows striking differences of the samples compared to

the controls. The control shellfish incubated with only 1 faintly illuminated, in contrast, the fish exposed to both the dye and CN^- , a sprightly illuminated yellowish color was observed.

Figure S12. Image of fish under visible (panel i, ii, iii) and 366 nm (panel iv, v, vi) light. Fish stained with **1** (100 μ M) for 30 min; fish incubated with CN⁻ and subsequently stained with **1** with 0 min (i, iv), 15 min (ii, v,), 30 min (iii, vi) at 25 °C.

4. Detection of cyanide in gel samples

Chemosensor **1** was used for the detection of cyanide in the gel samples. Semisolid cyanide containing gel was prepared on addition of alcohol to a saturated solution of calcium acetate and cyanide (10 μ M). Cyanide containing gel sample was then exposed with dye **1** (10 μ M) and a series of image were taken with a digital camera in different time intervals displayed increased in the bright fluorescence with time. The results demonstrated that dye **1** can be used for the detection of cyanide in the gel samples.

5. Detection of cyanide: Paper based strip approach

The positive results of our chemosensor for the detection of CN^{-} in solution, gel and in cells encouraged us to fabricate a simple paper strip that could detect CN^{-} ion. Whatmann 1 filter papers of the dimension 5 cm × 0.75 cm was coated with the acetonitrile solution of **1** (100 µM) and was air dried. Careful dipping the dye containing strips to the aqueous solution of CN^{-} quickly switched the emission color from colorless to deep green under 366 nm UV light.
 Table S1. Comparison of chemosensor 1 with other probes reported in the literature.

S. NO.	References	Solvent system used for cyanide sensing	Detection limit of CN ⁻ ions in solution.	Ability to detect cyanide in paper strips and LOD	Ability to detect cyanide in fish	Ability to detect cyanide in cells	Ability to detect cyanide in gel
1	ACS Sens., 2016 , <i>1</i> , 1265–1271	HEPES:DMSO (99:1)	5.77 μΜ	No	No	Yes (copper complex)	No
2	Anal. Chem., 2016 , 88, 6805–6811	H ₂ O/MeCN (7/3 v/v)	1 µM	No	No	No	No
3	Chem. Commun., 2015 , 51, 88098812	MeCN	13 µM	No	No	No	No
4	Anal. Chem., 2015 , 87, 12396–12403	H ₂ O/MeCN (1/3 v/v)	0.23 µM	Yes	No	No	No
5	Chem. Asian J., 2014 , 9, 3291 – 3298	Buffer/CH ₃ CN (1:3 v/v)	0.12 μΜ	Yes	No	No	No
6	Anal. Chem., 2014 , 86, 4648–4652	THF/H2O (8:2)	2.4 µM	No	No	No	No
7	Chem. Commun., 2013, 49 , 2912-2914	CH ₃ CN:H ₂ O (1:1)	1.6 mM	No	No	No	No
8	Dalton Trans., 2013, 42, 4450–4455	EtOH–H ₂ O (8 : 2)	0.026 ppm	No	No	No	No
9	<i>Org. Lett.</i> , 2013, 15, 2386-2389	DMSO/H ₂ O(99:1)	0.2 ppm	No	No	No	No
10	Dalton Trans., 2012, 41, 9607–9610	CH ₃ CN	5 μΜ	Yes (1 mM)	No	No	No
11	Chem. Commun., 2011, 47 , 12843–12845	MeOH/H ₂ O (1:1)	0.6 µM	No	No	No	No
12	<i>Org. Lett.</i> , 2011, 13, 3730-3733	CH ₃ CN	0.328 μM	No	No	No	No
13	Org. Lett., 2011, 13, 5056-5059	H ₂ O/DMSO (copper complex)	*	No	No	YES (copper complex)	No
14	Chem. Eur. J. 2011, 17, 2057 – 2062	MeOH/H ₂ O (4:6)	50 ppb	No	No	No	No
15	Chem. Commun., 2013, 49 , 78127814	H ₂ O	0.32 μM (AIE)	YES	No	No	No
16	Org. Lett., 2010, 12, 3406-3409	CH ₃ CN/H ₂ O (1:1)	0.06 ppm	No	No	Yes	No

17	Chem. Commun., 2009, 2866–2868	(0.02 M HEPES)(copper complex)	*	No	No	Yes (copper complex)	No
18	Org. Biomol. Chem., 2011, 9 , 4954–4958	DMF/H ₂ O (9:1)	0.44 µM	No	No	No	No
19	<i>Tetrahedron Letters</i> 2008, 49, 4102–4105	CH ₃ CN/H ₂ O (9:1)	*	No	No	Yes	No
20	Inorg. Chem., 2013 , 52 , 4890–4897	CH ₂ Cl ₂	6 μΜ	No	No	No	No
21	<i>Org. Biomol. Chem.</i> , 2008, 6 , 3038–3040	CH ₃ CN/H ₂ O(95:5)	0.51 µM	No	No	No	No
22	J. Org. Chem. 2006 , 71, 9470-9474	CH ₃ CN	10 µM	No	No	No	No
23	Chem. Commun., 2005, 5260–5262	CH ₃ CN	10 ppm	No	No	No	No
25	J. Org. Chem. 2009 , 74, 4849–4854	MeOH/H ₂ O (10:1)	3 μΜ	No	No	No	No
25	Present Manuscript	CH ₃ CN/H ₂ O (5:1)	77 nM	Yes (0.1 mM)	Yes	Yes	Yes

* Not mentioned

Figure S13. (a) The calculated energy minimized structures of (a) the probe **1** and (b) the CN⁻ bound **1** obtained from the DFT calculation with 6-311G basis.

6. DFT computational results:

Cartesian coordinates (X, Y, Z) table and the free energies in atomic unit (a.u.) for the optimized structure of the receptor 1 calculated by DFT methods at the B3LYP/6-311G(d) level.

С	-1.11252500	-0.53810100	2.35723000
С	-1.10218900	-0.36459400	0.98408900
С	0.13469200	-0.46637700	0.32088500
С	1.32982000	-0.73297700	0.98901400
С	1.29991500	-0.90679900	2.38600200
С	0.06990100	-0.80650300	3.06435200
С	-2.32523900	-0.07980900	0.13452800
С	2.56166700	-0.82281500	0.09815400
С	-0.05711600	-0.97552300	4.51745600
0	2.50208500	-1.16125900	2.99762300
0	-1.12813700	-0.88183900	5.13538300
S	4.24552300	-1.09592900	0.96004200
С	5.34156100	-1.04837600	-0.53923500
Ν	6.62005500	-1.24147300	-0.19538100
S	4.79201400	-0.74585200	-2.14169300
S	-3.88057900	0.12899700	1.20855400
С	-5.14498700	0.54108600	-0.08945200
S	-4.78286100	0.69172500	-1.75482500
С	7.74287400	-1.33186000	-1.14147900
С	8.99774700	-0.61306500	-0.59720100
С	8.03259700	-2.81258800	-1.40432800
0	9.11035200	-2.91048200	-2.24449900
0	7.38262700	-3.77172400	-1.01028200
С	9.49163600	-4.28956800	-2.64252900
С	8.84132200	0.87701700	-0.44345600
С	-7.58958500	0.95395400	-0.30266900
С	-7.56885100	2.32584300	-0.98350000
С	-7.98750000	-0.16600700	-1.31992200
С	-9.08987000	-1.02981800	-0.78670300
0	-8.29599000	2.60950400	-1.93714800
0	-6.72948100	3.20402100	-0.37898700
С	-6.69760300	4.56535800	-0.97394200
С	7.74345900	1.66092700	-0.72658000
Ν	8.04702600	2.99989300	-0.47949300
С	9.35080400	3.09900000	-0.02829500
С	9.88573200	1.77318300	0.00970200
С	-10.46331000	-0.58935900	-0.65558300
С	-11.20491500	-1.67306800	-0.09350200
Ν	-10.31423800	-2.71514200	0.10517000
С	-9.03967900	-2.31949300	-0.31141300
С	10.11772300	4.20771100	0.34765700
С	11.42825600	3.98532500	0.76022600
С	11.97177900	2.68229100	0.80156800

Receptor **1** E = -3598.39749949 a.u.

С	11.21207500	1.57694700	0.43175900
С	-11.11207600	0.61719500	-0.97053000
С	-12.47724800	0.72277600	-0.72274000
С	-13.20087200	-0.35638200	-0.16728100
С	-12.57846800	-1.56048500	0.15244900
Н	-2.02136100	-0.47725600	2.94334500
Н	0.16473200	-0.33772500	-0.75667300
Н	-2.21469800	0.84753500	-0.43013400
Н	-2.52815000	-0.89739100	-0.55929900
Н	2.45516200	-1.65094700	-0.60452000
Н	2.67741000	0.09863800	-0.47362200
Н	2.44267500	-1.26076900	3.98070000
Н	6.85040900	-1.42421000	0.78351400
Н	7.42332300	-0.87693400	-2.08244500
Н	9.28317300	-1.07263800	0.36039100
Н	9.80537900	-0.83132300	-1.30310200
Н	10.34528400	-4.15892900	-3.30372300
Н	9.76177000	-4.87391200	-1.76088900
Н	8.66172800	-4.77352800	-3.16098100
Н	-8.38945000	1.02436300	0.44281600
Н	-8.33038400	0.34040100	-2.22795400
Н	-7.09276600	-0.73716100	-1.57756200
Н	-5.98975200	5.11572500	-0.35866800
Н	-6.36055700	4.51090100	-2.01074500
Н	-7.69153200	5.01490300	-0.93469600
Н	6.77275500	1.38250900	-1.10019100
Н	7.40762000	3.77337400	-0.61679000
Н	-10.54364100	-3.62557500	0.48502900
Н	-8.20222800	-2.99357300	-0.23888000
Н	9.70524000	5.20915800	0.31629300
Н	12.04351000	4.82771800	1.05480000
Н	12.99672400	2.54629200	1.12722100
Н	11.63700300	0.57975600	0.46529500
Н	-10.54538500	1.44140300	-1.39157600
Н	-12.99855500	1.64393100	-0.95701000
Н	-14.26390000	-0.24485200	0.01362700
Н	-13.14217700	-2.38246500	0.57752600
N	-6.36183200	0.65458200	0.45427400
Н	-6.46398400	0.55741600	1.46542100
Н	0.88118400	-1.17894200	5.06315500
Receptor 1 with CN	E = -3691.32577839	a.u.	
С	-0.96668300	-2.23369900	1.29626500
C	-0 93429100	-1 38119800	0 19233700

С	-0.96668300	-2.23369900	1.29626500
С	-0.93429100	-1.38119800	0.19233700
С	0.29945000	-1.14501600	-0.42543000
С	1.48361400	-1.73913100	0.02543000
С	1.42722700	-2.60531700	1.12798000
С	0.19918500	-2.83435700	1.75981000
С	-2.15365500	-0.68662000	-0.38455300

С	2.72919400	-1.40324500	-0.77779500
0	2.61079100	-3.19661000	1.53065800
S	4.40712200	-1.71255000	0.08488400
С	5.51936100	-0.79804000	-1.08539600
Ν	6.78377500	-0.81787000	-0.64781000
S	4.99482200	-0.05617900	-2.55164800
S	-3.69097800	-0.98497000	0.69818400
C	-4 91683600	0 16592400	-0 08816600
9	-4 56723500	1 17421500	-1 42930700
C	7 95039800	-0.30043700	-1 37979400
C	8 85227300	0.50045700	-0 47447300
C	8 73906700	-1 18591500	-1 93625000
0	9 84404700	_1 00877400	-2 59063800
0	8 45225700	-2 67228600	_1 8/378200
C	10 71957200	-2.07220000	-2 20707000
C	10./185/200	-2.03017900	-3.20797900
	8.21646100	1.8601/100	-0.02/05000
	-7.28530100	0.8/396200	0.12519500
C	-7.01/96300	2.38200400	0.19340000
C	-/.88849000	0.46864500	-1.2620/600
C	-9.26244900	-0.12460300	-1.13364600
0	-7.64037800	3.22601200	-0.45344000
0	-6.10197300	2.68528200	1.14965100
С	-5.81991200	4.13329600	1.32894700
С	6.99437200	2.38566300	-0.38549200
N	6.81139100	3.61776800	0.24412700
С	7.91821300	3.90435500	1.02249400
С	8.83031900	2.81209900	0.87702800
С	-10.46345600	0.61183300	-0.79239700
С	-11.53937100	-0.32895500	-0.75826200
N	-11.00747200	-1.56990300	-1.06576700
С	-9.63506800	-1.43992900	-1.29041500
С	8.21565400	5.00186300	1.83838500
С	9.43423600	5.00392000	2.51085000
С	10.34604400	3.93348400	2.37731200
С	10.05454500	2.84032300	1.56718800
С	-10.71381900	1.96862000	-0.52148400
С	-12.01519900	2.35961900	-0.22246600
С	-13.06977100	1.41964700	-0.19122400
С	-12.84655900	0.07149900	-0.45784500
Н	-1.88116800	-2.44578000	1.83043700
Н	0.34784700	-0.47961500	-1.28156200
Н	-2.01710700	0.39488800	-0.43008100
Н	-2.39594200	-1.05931800	-1.38124900
Н	2.75593700	-1.97345800	-1.70822500
Н	2.73788800	-0.34097000	-1.02412800
Н	2.50348600	-3.86714800	2.25125400
Н	6.99150500	-1.28357500	0.23761800
Н	7.57640800	0.28765500	-2.22130300
Н	9.15222600	-0.02483300	0.40006900
Н	9.76199700	0.77052300	-1.04992200
Н	11.51756700	-1.47180000	-3.68102100
Н	11.11108500	-2.70776400	-2.44033400

Н	10.15624200	-2.61615500	-3.94366100
Н	-8.03505300	0.67100600	0.89707500
Н	-7.93140800	1.37420000	-1.87376000
Н	-7.20759900	-0.23526400	-1.74504000
Н	-5.11859800	4.17415300	2.15909700
Н	-5.37645100	4.54093500	0.41856300
Н	-6.74158300	4.67014200	1.56023900
Н	6.23401600	1.98470800	-1.03624100
Н	5.99053000	4.20244100	0.14478800
Н	-11.52623400	-2.43739900	-1.12819200
Н	-9.03465400	-2.29699600	-1.54729600
Н	7.51884200	5.82476200	1.94442200
Н	9.68830300	5.84233700	3.14917200
Н	11.28625200	3.96876600	2.91563500
Н	10.76066100	2.02318000	1.46918700
Н	-9.89497900	2.67940500	-0.53973900
Н	-12.22889100	3.40074300	-0.00845500
Н	-14.07344600	1.75475800	0.04457500
Н	-13.66043600	-0.64346000	-0.43287100
Ν	-6.10200900	0.08816000	0.51981600
Н	-6.21203800	-0.53009400	1.32441100
С	0.12595900	-3.74048700	2.98632100
Н	0.85051200	-3.40947800	3.74333400
0	-1.24190400	-3.67093900	3.47422200
Н	-1.28852700	-4.18114300	4.32689500
С	0.45196900	-5.12208500	2.60296300
Ν	0.67669300	-6.22514600	2.30832800

References

- 1 Q.-H. Song, W.-J. Tang, X.-M. Hei, H.-B. Wang, Q.-X. Guo and S.-Q. Yu, *Eur. J. Org. Chem.*, 2005, 1097; (b) L. Gupta, K. Srivastava, S. Singh, S. K. Puri and P. M. S. Chauhana, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 3306.
- 2 J. Hatai, S. Pal, G. P. Jose, T. Sengupta and S. Bandyopadhyay, RSC Adv., 2012, 2, 7033.
- 3 (a) J. Hatai, S. Pal and S. Bandyopadhyay, RSC Adv., 2012, 2, 10941; (b) J. Hatai, S. Pal, G. P. Jose and S. Bandyopadhyay, Inorg. Chem., 2012, 51, 10129.
- 4 D. Dasgupta, R. Ghosh and T. K. Sengupta, ISRN Biotechnol, 2013, Article ID 250749, 13 pp.