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1. Experimental details

Synthesis
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a = Dioxane/H,0, (3:1, v/v), K,CO3, CS,, 25 °C, 50%

Scheme S1. Synthetic scheme of probe 1

Compound 2* and compound 3% were prepared following the reported method and compound 1 was
synthesized following the reported method of bipodal thiocarbamate synthesis.?

dimethyl 2,2"-(((((5-formyl-4-hydroxy-1,3-phenylene) bis(methylene)) bis(sulfanediyl))
bis(carbonothioyl))bis(azanediyl))bis(3-(1H-indol-3-yl)propanoate) (1)

Methyl-2-amino-3-(1H-indol-3-yl)propanoate (0.1 g, 0.459 mmol) and K,CO;3 (0.13 g, 0.918 mmol)
in dioxane/water (1:4, v/v) was stirred for 5 minutes at 0 °C. Carbon disulfide (1.39 g, 1.10 mL,
18.36 mmol) was added and the mixture was stirred for another 5 minutes. 3,5-bis(bromomethyl)-2-
hydroxybenzaldehyde (0.07 g, 0.229 mmol) dissolved in dioxane was subsequently added to it
dropwise over a period of 10 minutes. The solution was allowed to attain room temperature (25 °C)
and stirred for another 60 minutes. The yellowish solution thus obtained was concentrated under
reduced pressure and the residue was dissolved in dichloromethane (20 mL). The organic layer was
washed with H,O (20 mL), dried over anhydrous Na,SO,4 and the volatiles were removed under
reduced pressure, which on chromatography (CH,Cl,/CH3;CN, 19:1, v/v) yielded compound 1 as a
white solid ( 0.17 g, 51%); mp 118-120 °C. *H NMR (400 MHz, CDCls) &: 11.25 (s, 1H, ArOH),
9.59 (s, 1H, ArCHO), 8.22 (s, 1H, ArNH), 8.16 (s, 1H, ArNH), 7.65-7.64 (m, 1H, ArH), 7.52-7.48
(m, 2H, ArH), 7.46-7.40 (m, 2H, ArH), 7.32-7.25 (m, 3H, ArH), 7.17-7.14 (m, 2H, ArH), 7.09-7.01
(m, 2H, ArH), 6.83 (s, 2H, ArH), 5.51-5.48 (m, 2H, CHCO,Me), 4.38-4.31 (m, 4H, ArCH,), 3.67 (s,
3H, CO,Me), 3.66 (s, 3H, CO,Me), 3.58 (d, J = 5.36, 1H, CH,CH), 3.55 (d, J =5.32, 1H, CH,CH),
3.37 (d, J = 456, 1H, CH,CH), 3.33 (d, J = 4.60, 1H, CH,CH). *C NMR (125 MHz, CDCl3) &:
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197.0, 196.7, 196.2, 171.2, 158.3, 138.1, 135.9, 133.2, 127.9, 127.3, 125.5, 123.1, 123, 122.2, 119.8,
119.7, 118.4, 118.3, 111.4, 111.2, 109.1, 108.9, 66.9, 59.4, 52.6, 38.4, 32.6, 26.5. Japs iN CHsCN
(nm, €): 270 (1x10%), 340 (5916), 400 (910). FT-IR (KBr, cm™): 3362, 3401, 2958, 2923, 1733,
1649, 1457, 1339, 1213, 772, 744. ESI-MS calculated for CasHsN4OgSsK* 734.0998, found
734.0997.

100, 773.0997 TOF MS ES+
219
1+K*
1+H*
735.1400
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775.1212
736.1516
1+Na*
757.1025
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759.1031 777.1048
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Figure S1. ESI mass spectrum of the compound 1.
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Figure S2. *H NMR spectrum of chemosensor 1 in CDCls.
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Figure S3. *C NMR spectrum of chemodosimeter of 1 in CDCl.
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Figure S4. (A) Emission spectra of 1 (10 uM) with increasing concentration of CN~; (B)

Ratiometric behavior of 1 (10 uM) with an increasing concentration of CN™ (0 to 150 pM) in

mixed organic—aqueous media (CH3CN/H0, 5:1, v/v).
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Figure S5. (A) UV-vis response of 1 (10 uM) upon addition of SH™ (150 uM) in mixed media
(CH3CN/H0, 5:1); (B) Emission spectra of 1 (10 uM) with increasing concentration of SH™; (C)
Ratiometric behavior of 1 (10 uM) with an increasing concentration of SH™ (0 to 150 uM) in
mixed organic—aqueous media (CH3CN/H0, 5:1, v/v).
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Figure S6. Time dependence fluorescence change of chemosensor 1(10 puM) in presence of CN

(60 uM) in mixed solvent media.
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Figure S7. Job’s plot of 1 with CN" in mixed organic—aqueous media (CH3CN/H,0, 5:1, v/v).

The total concentration of chemosensor and CN™ kept constant at 8 uM.
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Figure S8. 'H NMR chemical shift of chemodosimeter 1 (10 mM) upon addition of CN~
(TBA-CN) in CDsCN.
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Figure S9. ESI-MS isotopic distribution of the Cs;H71NgO6S4 (1-CN + TBA™) fragment. The

simulated distribution is given in the inset.
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Figure S10. Determination of detection limit of chemodosimeter 1 (10 uM) from fluorescence
titration in mixed solvent medium (CH3CN/H,0O, 5:1, v/v) at 25 °C. The detection limit of

chemosensor is 77 nM.

2. Determination of cyanide in HeLa S3

Chemosensor 1 was used for the detection of CN™ ion in cells with a fluorescence imaging
experiment by using a confocal laser scanning microscope (CLSM). Human epithelial carcinoma
cells HeLa S3 were cultured at 37°C in Dulbecco’s Modified Eagle’s Medium (DMEM),
supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin,100 pg/mL streptomycin
and 5% CO,. Cells (0.2 x 10° per mL) were plated on 12 mm sterile cover-slips and were allowed to
adhere for 24 h. The cultured cells were first exposed to cyanide (CN") (40 uM) dissolved in DMEM
for 30 min at 37 °C. The cells were washed twice with PBS to remove the retained CN" ions followed
by incubation with dye 1 (10 uM in DMSO) in PBS for 5 min at 25 °C. After incubation, cells were
washed twice with PBS to remove residual dye and fixed with 4% paraformaldehyde for 10 minutes.
The cells fixed on the cover-slips were washed once and mounted on glass slide and observed under
microscope.® The slides were observed under Carl Zeiss CLSM-710 (Axio observer microscope
version Z.1) microscope using 405 nm excitation argon laser with MBS (main beam splitter) and the
observed emission ranged from 515-540 nm. The image acquisition was done under X40 oil

immersion lens (NA: 1.3). The frame size of 512 x 512 (8-bit image) was maintained using the
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software provided (Zen 2010) along with the microscope. The fluorescence imaging obtained by
CLSM revealed marked differences in intensity of intracellular fluorescent of CN™ strained cells
compare to the controls. The fluorescence image of HeLa S3 treated with 1 (Figure 1B, iii) under the
same conditions showed weak intercellular fluorescence. In contrast, cells treated with both CN™ and
dye showed a vivid intercellular fluorescence (Figure 1B, iv). Thus, chemosensor 1 can be used to

detect the intracellular CN™.

A

Figure S11. Confocal laser scanning microscopic images of HelLa S3: (A) DIC image; (B)
corresponding fluorescent images of (i) Only cells; (ii) Cells treated with cyanide salt (40 uM)
for 30 min; (iii) Cells treated with dye (10 uM) for 5 min at 37 °C; (iv) Cells treated with cyanide
salts (40 uM) for 30 min at 37 °C followed by dye (10 uM) for 5 min at 25 °C. Images are

representative of two independent experiments.

3. Visual detection of cyanide in shellfish
Chemosensor 1 was used for the detection of cyanide in the adult shellfish. The adult shrimps
were treated with aqueous solution of CN™ (100 uM) for 1 h at 25 °C followed by washed with PBS
to remove any CN  ion adhering to the surface, and were subsequently treated with a solution of dye
1 (100 uM) for 30 min followed by washed with PBS and observed under 366 nm light. The visual

images taken with a digital camera (Figure 7) shows striking differences of the samples compared to
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the controls. The control shellfish incubated with only 1 faintly illuminated, in contrast, the fish

exposed to both the dye and CN ™, a sprightly illuminated yellowish color was observed.

Figure S12. Image of fish under visible (panel i, ii, iii) and 366 nm (panel iv, v, vi) light. Fish
stained with 1 (100 uM) for 30 min; fish incubated with CN™ and subsequently stained with 1
with 0 min (i, iv), 15 min (ii, v,), 30 min (iii, vi) at 25 °C.

4. Detection of cyanide in gel samples
Chemosensor 1 was used for the detection of cyanide in the gel samples. Semisolid cyanide
containing gel was prepared on addition of alcohol to a saturated solution of calcium acetate and
cyanide (10 uM). Cyanide containing gel sample was then exposed with dye 1 (10 uM) and a series
of image were taken with a digital camera in different time intervals displayed increased in the bright
fluorescence with time. The results demonstrated that dye 1 can be used for the detection of cyanide

in the gel samples.

5. Detection of cyanide: Paper based strip approach
The positive results of our chemosensor for the detection of CN™ in solution, gel and in cells
encouraged us to fabricate a simple paper strip that could detect CN™ ion. Whatmann 1 filter papers of
the dimension 5 cm x 0.75 cm was coated with the acetonitrile solution of 1 (100 puM) and was air
dried. Careful dipping the dye co ntaining strips to the agueous solution of CN™ quickly switched the

emission color from colorless to deep green under 366 nm UV light.
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Table S1. Comparison of chemosensor 1 with other probes reported in the literature.

Ability to -
_ detect | Abilityto | Abiliyto | P
Detection . to
Solvent system . cyanide detect detect
S. References used for cyanide limit of in paper | cyanidein | cyanidein detect
NO. _y CNionsin p_p y . y cyanide
sensing solution strips fish cells in el
' and LOD g
ACS Sens., 2016, 1 HEPES:DMSO ves
1 1265-1271 (99:1) 5.77 uM No No (copper No
complex)
Anal. Chem., 2016, 88, H,O/MeCN (7/3
2 1uM No No No No
6805-6811 vIv)
Chem. Commun., 2015,
3 MeCN 13 uM No No No No
51, 8809--8812
Anal. Chem., 2015, 87, H,O/MeCN (1/3
4 0.23 uM Yes No No No
12396—12403 vIv)
Chem. Asian J., 2014, 9, Buffer/CH3CN (1:3
5 0.12 uM Yes No No No
3291 - 3298 v/Iv)
Anal. Chem., 2014, 86,
6 THF/H20 (8:2) 2.4 uM No No No No
4648-4652
Chem. Commun., 2013,
7 CH3CN:H,0 (1:1) 1.6 mM No No No No
49, 2912-2914
Dalton Trans., 2013, 42,
8 EtOH-H,0 (8:2) 0.026 ppm No No No No
4450-4455
Org. Lett., 2013, 15,
9 DMSO/H,0(99:1) 0.2 ppm No No No No
2386-2389
Dalton Trans., 2012, 41, Yes
10 CHZCN 5uM No No No
9607-9610 (1 mM)
Chem. Commun., 2011,
11 MeOH/H,0 (1:1) 0.6 uM No No No No
47,12843-12845
Org. Lett., 2011, 13,
12 CHiCN 0.328 uM No No No No
3730-3733
YES
Org. Lett., 2011, 13, H,O/DMSO (copper
13 * No No (copper No
5056-5059 complex)
complex)
14 Chem. Eur. J. 2011, 17, MeOH/H,0 (4:6) 50 b
e :
2057 — 2062 2 pp No No No No
15 Chem. Commun., 2013, HO 0.32 uM VES
49, 7812--7814 ’ (AIE) No No No
Org. Lett., 2010, 12,
16 CH5CN/H,0 (1:1) 0.06 ppm No No Yes No

3406-3409
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(0.02M Yes
17 Chem. Commun., 2009, HEPES)(copper * No No (copper No
28662868
complex) complex)
Org. Biomol. Chem.,
18 2011, 0, 49544958 DMF/H,0 (9:1) 0.44 uM No No No No
Tetrahedron Letters
19 2008, 49, 41024105 CH4CN/H,0 (9:1) * No No Yes No
Inorg. Chem., 2013, 52,
20 48904897 CHCl, 6 uM No No No No
21 Org. Biomol. Chem., CH,CN/H,0(95:5) 0.51 pM No No No No
2008, 6, 3038-3040
J. Org. Chem. 2006, 71,
22 9470-9474 CH,.CN 10 um No No No No
Chem. Commun., 2005,
23 52605062 CH;CN 10 ppm No No No No
25 - Org. Chem. 2009, 74, MeOH/H,0 (10:1) 3uM No No No No
4849-4854
25 Present Manuscript CH3CN/H,0 (5:1) 77 nM ves Yes Yes Yes
(0.1 mM)

* Not mentioned

Figure S13. (a) The calculated energy minimized structures of (a) the probe 1 and (b) the CN~
bound 1 obtained from the DFT calculation with 6-311G basis.
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6. DFT computational results:

Cartesian coordinates (X, Y, Z) table and the free energies in atomic unit (a.u.) for the optimized

structure of the receptor 1 calculated by DFT methods at the B3LYP/6-311G(d) level.

Receptor 1

QOOQOOOOQOzZ20000zZ20000000000000000N0ONNZAOQNOOCOOOOOOOOO0N

E =-3598.39749949 a.u.

-1.
-1.
.13469200
.32982000
.29991500
.06990100
.32523900
.56166700
.05711600
.50208500
.12813700
.24552300
.34156100
.62005500
.79201400
.88057900
.14498700
.78286100
. 74287400
.99774700
.03259700
.11035200
.38262700
.49163600
.84132200
.58958500
.56885100
.98750000
.08987000
.29599000
.72948100
.69760300
.74345900
.04702600
.35080400
.88573200
.46331000
.20491500
.31423800
.03967900
.11772300
.42825600
.97177900

11252500
10218900

.53810100
.36459400
.46637700
. 73297700
.90679900
.80650300
.07980900
.82281500
.97552300
.16125900
.88183900
.09592900
.04837600
.24147300
.74585200
.12899700
.54108600
.69172500
.33186000
.61306500
.81258800
.91048200
. 77172400
.28956800
.87701700
.95395400
.32584300
.16600700
.02981800
.60950400
.20402100
.56535800
.66092700
.99989300
.09900000
. 77318300
.58935900
.67306800
.71514200
.31949300
.20771100
.98532500
.68229100

O NP> OODWNOOON

.35723000
.98408900
.32088500
.98901400
.38600200
.06435200
.13452800
.09815400
.51745600
.99762300
.13538300
.96004200
.53923500
.19538100
.14169300
.20855400
.08945200
.75482500
.14147900
.59720100
.40432800
.24449900
.01028200
.64252900
.44345600
.30266900
.98350000
.31992200
.78670300
.93714800
.37898700
.97394200
.72658000
.47949300
.02829500
.00970200
.65558300
.09350200
.10517000
.31141300
.34765700
.76022600
.80156800
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Receptor 1 with CN

QOO0

.21207500
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.47724800
.20087200
.57846800
.02136100
.16473200
.21469800
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.45516200
.67741000
.44267500
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.42332300
.28317300
.80537900
.34528400
76177000
.66172800
.38945000
.33038400
.09276600
.98975200
.36055700
.69153200
. 77275500
.40762000
.54364100
.20222800
.70524000
.04351000
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.54538500
.99855500
.26390000
.14217700
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.88118400
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.19918500
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93429100

.57694700
.61719500
. 72277600
.35638200
.56048500
.47725600
.33772500
.84753500
.89739100
.65094700
.09863800
.26076900
.42421000
.87693400
.07263800
.83132300
.15892900
.87391200
. 77352800
.02436300
.34040100
. 73716100
.11572500
.51090100
.01490300
.38250900
. 77337400
.62557500
.99357300
.20915800
.82771800
.54629200
.57975600
.44140300
.64393100
.24485200
.38246500
.65458200
.55741600
.17894200

.23369900
.38119800
.14501600
.73913100
.60531700
.83435700
.68662000

O P OOOoO-R

.43175900
.97053000
.72274000
.16728100
.152449500
.94334500
. 75667300
.43013400
.55929900
.60452000
.47362200
.98070000
.78351400
.08244500
.36039100
.30310200
.30372300
.76088900
.16098100
.44281600
.227795400
.57756200
.35866800
.01074500
.93469600
.10019100
.61679000
.48502900
.23888000
.31629300
.05480000
.12722100
.46529500
.39157600
.95701000
.01362700
.57752600
.45427400
.46542100
.06315500

.29626500
.19233700
.42543000
.02543000
.12798000
.75981000
.38455300
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.84655900
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