

Electronic Supplementary Information

Synthesis of azonia cyanine derivatives as NIR fluorescent probes for nucleic acid

detection and cell imaging

(Yuan Chen,^a Xuerui Wei,^b Ru Sun,^a Yujie Xu,^{*b} Jianfeng Ge^{*a,c})

- ^{a.} College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
- ^{b.} State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- ^{c.} Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

Index

Table S1 Optical properties of dyes 1d-f in different solvents
Table S2 Optical properties of dyes 1d-f toward DNA and RNA7
Fig. S1 Absorption spectra (a) and emission spectra (b, excited at 580nm, slit widths: $3 \text{ nm}/1.5 \text{ nm}$) of dye 1b (10 μ M) in different solvents; (c) the photos of 1b in different solvents under sunlight (top) and UV lamp (365 nm, down)
Fig. S2 Absorption spectra (a) and emission spectra (b, excited at 580 nm, slit widths: 3 nm/1.5 nm) of dye 1c (10 μ M) in different solvents; (c) the photos of 1c in different solvents under sunlight (top) and UV lamp (365 nm, down)
Fig. S3 Absorption spectra (a) and emission spectra (b, excited at 690 nm, slit widths: 3 nm/3 nm) of dye 1d (10 μ M) in different solvents
Fig. S4 Absorption spectra (a) and emission spectra (b, excited at 6 80nm, slit widths: 3 nm/3 nm) of dye 1e (10 μ M) in different solvents
Fig. S5 Absorption spectra (a) and emission spectra (b, excited at 690 nm, slit widths: 3 nm/3 nm) of dye 1f (10 μ M) in different solvents
Fig. S6 Optical responses of dye 1a (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm)
Fig. S7 Optical responses of dye 1b (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm)10

Fig. S8 Optical responses of dye **1c** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm)......10

Fig. S17 Fluorescence emission spectrum of dye **1b** (10 μ M) toward DNA (0–150 μ g·L⁻¹) and RNA (0–150 μ g·L⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO. (a) Emission spectra of dye **1b** in the presence of different concentrations of DNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (b) emission spectra of dye **1b** in the presence of different concentrations of RNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (b) emission

Fig. S26 Fluorescence confocal images of the digest experiment for dye 1c (10 μ M) with fixed He (a,b) Cells were incubated with 1c in control experiments; (c,b) cells were incubated with 1a and (1 μ G/mL), (a,b) cells were incubated with 1a and (1 μ G/mL). Bed shapped emission was	eLa cells. d DNase
collected in 575–750 nm upon excitation at 561 nm.	20
Fig. S27 ¹ H NMR spectra of dye 3a.	21
Fig. S28 ¹ H NMR spectra of dye 3b .	21
Fig. S29 ¹ H NMR spectra of dye 3c	22
Fig. S30 ¹ H NMR spectra of dye 1a.	22
Fig. S31 ¹ H NMR spectra of dye 1b.	23
Fig. S32 ¹ H NMR spectra of dye 1c	23
Fig. S33 ¹ H NMR spectra of dye 1d.	24
Fig. S34 ¹ H NMR spectra of dye 1e.	24
Fig. S35 ¹ H NMR spectra of dye 1f.	25
Fig. S36 ¹³ C NMR spectra of dye 3a	25
Fig. S37 ¹³ C NMR spectra of dye 3b.	26
Fig. S38 ¹³ C NMR spectra of dye 3c.	26
Fig. S39 ¹³ C NMR spectra of dye 1a	27
Fig. S40 ¹³ C NMR spectra of dye 1b.	27
Fig. S41 ¹³ C NMR spectra of dye 1c	28
Fig. S42 ¹³ C NMR spectra of dye 1d.	28
Fig. S43 ¹³ C NMR spectra of dye 1e	29
Fig. S44 ¹³ C NMR spectra of dye 1f.	29
Fig. S45 HRMS(ESI ⁺) spectra of dye 4a	30
Fig. S46 HRMS(ESI ⁺) spectra of dye 4b	
Fig. S47 HRMS(ESI ⁺) spectra of dye 4c.	31
Fig. S48 HRMS(ESI ⁺) spectra of dye 1a	31
Fig. S49 HRMS(ESI ⁺) spectra of dye 1b	32
Fig. S50 HRMS(ESI⁺) spectra of dye 1c.	32

Fig. S51 HRMS(ESI ⁺) spectra of dye 1d	33
Fig. S52 HRMS(ESI⁺) spectra of dye 1e	33
Fig. S53 HRMS(ESI⁺) spectra of dye 1f	34

Table S1 Optical properties of dyes 1d–f in different solvents.						
Dyes	Solvent	$\lambda_{Abs,max}{}^a$	$\lambda_{\text{Em,max}}{}^{a}$	ε ^b	Ф с	
1d	DCM	756	787	8.79	7.6	
1d	TOL	728	777	2.74	6.9	
1d	THF	735	783	3.86	7.1	
1d	DMSO	729	795	3.3	18.2	
1d	MeOH	757	786	5.78	2.8	
1e	DCM	758	789	9.67	5.56	
1e	TOL	730	778	3.26	7.58	
1e	THF	737	780	5.00	10.2	
1e	DMSO	733	793	3.75	9.19	
1e	MeOH	732	780	5.40	4.79	
1f	DCM	768	797	10.28	1.0	
1f	TOL	751	784	3.82	3.1	
1f	THF	752	792	5.54	1.7	
1f	DMSO	749	797	3.88	1.3	
1f	MeOH	769	796	8.19	0.4	

^{*a*} reported in nm; ^{*b*} ϵ reported in 10⁴ M⁻¹cm⁻¹; ^{*c*} reported in %, *HEDITCP* (Φ = 0.159 in ethanol) was used as the reference compound.

Compounds	$\lambda_{Abs,max}{}^a$	$\lambda_{Em,max}{}^a$	ε ^b	Ф с
1d	743	775	3.48	0.37
1d+DNA	673	785	3.04	0.35
1d+RNA	680	786	1.92	0.47
1e	668	783	2.46	0.21
1e+DNA	672	788	2.26	0.18
1e+RNA	681	778	1.19	0.19
1f	754	789	3.33	< 0.01
1f+DNA	688	794	2.14	< 0.01
1f+RNA	697	801	1.16	< 0.01

Т

^{*a*} reported in nm; ^{*b*} εreported in 10⁴ M⁻¹cm⁻¹; ^{*c*} reported in %. **HEDITCP** (Φ = 0.159 in ethanol) was used as the reference compound.

Fig. S1 Absorption spectra (a) and emission spectra (b, excited at 580nm, slit widths: 3 nm/1.5 nm) of dye 1b (10 $\mu M)$ in different solvents; (c) the photos of 1b in different solvents under sunlight (top) and UV lamp (365 nm, down).

Fig. S2 Absorption spectra (a) and emission spectra (b, excited at 580 nm, slit widths: 3 nm/1.5 nm) of dye **1c** (10 μ M) in different solvents; (c) the photos of **1c** in different solvents under sunlight (top) and UV lamp (365 nm, down).

Fig. S3 Absorption spectra (a) and emission spectra (b, excited at 690 nm, slit widths: 3 nm/3 nm) of dye 1d (10 μ M) in different solvents.

Fig. S4 Absorption spectra (a) and emission spectra (b, excited at 6 80nm, slit widths: 3 nm/3 nm) of dye **1e** (10 μ M) in different solvents.

Fig. S5 Absorption spectra (a) and emission spectra (b, excited at 690 nm, slit widths: 3 nm/3 nm) of dye 1f (10 μ M) in different solvents.

Fig. S6 Optical responses of dye **1a** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm).

Fig. S7 Optical responses of dye **1b** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm).

Fig. S8 Optical responses of dye **1c** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/1.5 nm).

Fig. S9 Optical responses of dye **1d** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 690 nm, slit widths: 3 nm/3 nm).

Fig. S10 Optical responses of dye **1e** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 690 nm, slit widths: 3 nm/3 nm).

Fig. S11 Optical responses of dye **1f** (10 μ M) in THF with different fraction of water (f_w). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 690 nm, slit widths: 3 nm/3 nm).

Fig. S12 Optical responses of dye **1b** (10 μ M) toward DNA (0–800 μ g·mL⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra, inset shows photograph of the samples before and after addition DNA; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/3 nm, inset shows photographs of the samples under 365 nm); (c) excitation spectra (λ_{em} = 681 nm); (d) fluorescence intensity toward different concentrations of DNA at 681 nm.

Fig. S13 Optical responses of dye **1b** (10 μ M) toward RNA (0–800 μ g·mL⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra, inset shows photograph of the samples before and after addition RNA; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/3 nm, inset shows photographs of the samples under 365 nm); (c) excitation spectra (λ_{em} = 678 nm); (d) fluorescence intensity toward different concentrations of RNA at 678 nm.

Fig. S14 Optical responses of dye **1c** (10 μ M) toward DNA (0–800 μ g·mL⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra, inset shows photograph of the samples before and after addition DNA; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/3 nm, inset shows photographs of the samples under 365 nm); (c) excitation spectra (λ_{em} = 695 nm); (d) fluorescence intensity toward different concentrations of DNA at 695 nm.

Fig. S15 Optical responses of dye **1c** (10 μ M) toward RNA (0–800 μ g·mL⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra, inset shows photograph of the samples before and after addition RNA; (b) emission spectra (λ_{ex} = 580 nm, slit widths: 3 nm/3 nm, inset shows photographs of the samples under 365 nm); (c) excitation spectra (λ_{em} = 697 nm); (d) fluorescence intensity toward different concentrations of RNA at 697 nm.

Fig. S16 Fluorescence emission spectrum of dye **1a** (10 μ M) toward DNA (0–150 μ g·L⁻¹) and RNA (0–150 μ g·L⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO. (a) Emission spectra of dye **1a** in the presence of different concentrations of DNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (b) emission spectra of dye **1a** in the presence of different concentrations of RNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (c) fluorescene intensities toward different concentrations of RNA at 680 nm; (d) fluorescene intensities toward different concentrations of RNA at 680 nm.

Fig. S17 Fluorescence emission spectrum of dye **1b** (10 μ M) toward DNA (0–150 μ g·L⁻¹) and RNA (0–150 μ g·L⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO. (a) Emission spectra of dye **1b** in the presence of different concentrations of DNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (b) emission spectra of dye **1b** in the presence of different concentrations of RNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (c) fluorescene intensities toward different concentrations of RNA at 678 nm.

Fig. S18 Fluorescence emission spectrum of dye **1c** (10 μ M) toward DNA (0–150 μ g·L⁻¹) and RNA (0–150 μ g·L⁻¹) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO. (a) Emission spectra of dye **1c** in the presence of different concentrations of DNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (b) emission spectra of dye **1c** in the presence of different concentrations of RNA (λ ex = 580 nm, slit widths: 3 nm/3 nm); (c) fluorescene intensities toward different concentrations of RNA at 695 nm; (d) fluorescene intensities toward different concentrations of RNA at 697 nm.

Fig. S19 Optical responses of dye **1d** (10 μ M) in the presence or abpresence of DNA (800 μ g·mL⁻¹, a, b, c) or RNA (650 μ g·mL⁻¹, d, e, f) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 680 nm, slit widths: 3 nm/3 nm); (c) excitation spectra (λ_{em} = 785 nm); (d) absorption spectra; (e) emission spectra (λ ex = 680 nm, slit widths: 3 nm/3 nm); (f) excitation spectra (λ em = 786 nm).

Fig. S20 Optical responses of dye **1e** (10 μ M) in the presence or abpresence of DNA (800 μ g·mL⁻¹, a, b, c) or RNA (650 μ g·mL⁻¹, d, e, f) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 680 nm, slit widths: 3 nm/3 nm); (c) excitation spectra (λ_{em} = 788 nm); (d) absorption spectra; (e) emission spectra (λ ex = 680 nm, slit widths: 3 nm/3 nm); (f) excitation spectra (λ em = 778 nm).

Fig. S21 Optical responses of dye **1f** (10 μ M) in the presence or abpresence of DNA (800 μ g·mL⁻¹, a, b, c) or RNA (650 μ g·mL⁻¹, d, e, f) in Tris-HCl buffer (10 mM, pH=7.4) containing 10% DMSO (v / v). (a) Absorption spectra; (b) emission spectra (λ_{ex} = 680 nm, slit widths: 3 nm/3 nm); (c) excitation spectra (λ_{em} = 794 nm); (d) absorption spectra; (e) emission spectra (λ ex = 680 nm, slit widths: 3 nm/3 nm); (f) excitation spectra (λ em = 801 nm).

Fig. S22 The fluorescence intensity (a) and fluorescence spectra (b) of dye **1b** toward different analytes in Tris-HCl buffer solutions contained 10% (v / v) DMSO (10 mM, pH = 7.4). Analytes: 800 μ g·mL⁻¹ for DNA, RNA; 100 mM for Na⁺, K⁺, Ag⁺; 5 mM for Ca²⁺, Mg²⁺, Cu²⁺, Mn²⁺, Ni²⁺, Cd²⁺, Co²⁺, Hg²⁺, Pb²⁺, Zn²⁺; 1 mM for Cys, GSH, Glu, Gry, Lcy, His, Phe, Pro, Ser and 5 mg mL⁻¹ for BSA.

Fig. S23 The fluorescence intensity (a) and fluorescence spectra (b) of dye **1c** toward different analytes in Tris-HCl buffer solutions contained 10% (v / v) DMSO (10 mM, pH = 7.4). Analytes: 800 μ g·mL⁻¹ for DNA, RNA; 100 mM for Na⁺, K⁺, Ag⁺; 5 mM for Ca²⁺, Mg²⁺, Cu²⁺, Mn²⁺, Ni²⁺, Cd²⁺, Co²⁺, Hg²⁺, Pb²⁺, Zn²⁺; 1 mM for Cys, GSH, Glu, Gry, Lcy, His, Phe, Pro, Ser and 5 mg mL⁻¹ for BSA.

Fig. S24 Fluorescence confocal images of living HeLa cells with dyes **1a**–**c**. (a, b): Bright-field image and confocal image (red channel) of cells with **1a** (10 μ M); (c, d): Bright-field image and confocal image (red channel) of cells with **1b** (10 μ M); (e, f): Bright-field image and confocal image (red channel) of cells with **1b** (10 μ M); (e, f): Bright-field image and confocal image (red channel) of cells with **1c** (10 μ M); (Red channel emission was collected in 575–750 nm upon excitation at 561 nm.

Fig. S25 Fluorescence confocal images of the digest experiment for dye **1b** (10 μ M) with fixed HeLa cells. (a,b) Cells were incubated with **1b** in control experiments; (c,b) cells were incubated with **1a** and DNase (1 mg/mL); (e,f) cells were incubated with **1b** and RNase (10 mg/mL). Red channel emission was collected in 575–750 nm upon excitation at 561 nm.

Fig. S26 Fluorescence confocal images of the digest experiment for dye **1c** (10 μ M) with fixed HeLa cells. (a,b) Cells were incubated with **1c** in control experiments; (c,b) cells were incubated with **1a** and DNase (1 mg/mL); (e,f) cells were incubated with **1c** and RNase (10 mg/mL). Red channel emission was collected in 575–750 nm upon excitation at 561 nm.

Fig. S41 ¹³C NMR spectra of dye 1c.

Fig. S45 HRMS(ESI⁺) spectra of dye 4a.

Fig. S47 HRMS(ESI⁺) spectra of dye 4c.

+ESI Scan (0.1 min) Frag=120.0V cy-75-01.d x10 5 2.3 2.2 2.1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 406.1331 1.1 1 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 398 399 400 401 402 403 404 405 406 407 408 Counts vs. Mass-to-Charge (m/z) 409 410 411 412 413 414 Fig. S50 HRMS(ESI⁺) spectra of dye 1c.

Fig. S53 HRMS(ESI⁺) spectra of dye 1f.