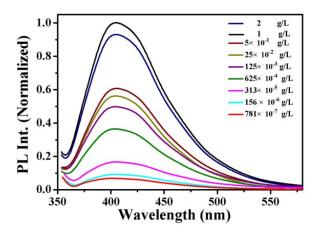
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Supporting information

Facile Synthesis of MoS₂ Quantum Dots as Fluorescent Probes for Sensing of Hydroquinone and Bioimaging


Lu Li,^a Zhihua Guo,^a Shengxu Wang,^a Daowei Li,^b Xianfeng Hou,^a Fangting Wang,^a Yizhou Yang^a, Xudong Yang,^{*a}

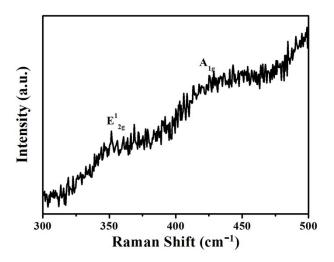
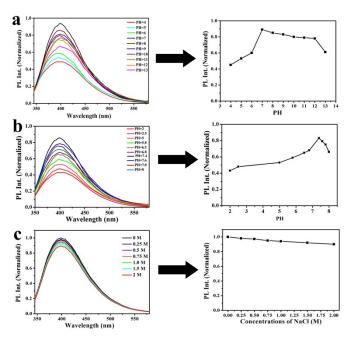
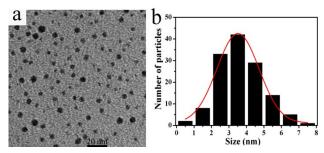
School of Chemical Engineering, Advanced Institute of Materials Science,
Changchun University of Technology, Changchun 130012, P. R. China.

^b School of Stomatology, Jilin University, Changchun 130041, P. R. China

*Corresponding author:

Tel: +86-431-85716328; Fax: +86-431-85716328; E-mail: yangxudong10@163.com; yangxudong@ccut.edu.cn.

Figure. S1 The PL spectra of MoS_2 QDs aqueous solution with different concentrations.

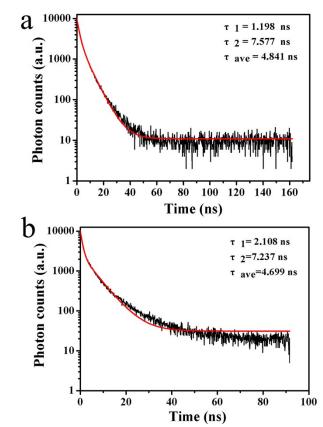

Figure S2. Raman spectrum of as prepared MoS_2 QDs

Figure S3. a) Effect of pH on fluorescent intensity of MoS_2 QDs in the aqueous, b) Effect of pH on fluorescent intensity of MoS_2 QDs in the PBS buffer solution aqueous, c) ion stability of MoS_2 QDs with different concentrations of NaCl in range of $0 \sim 2M$.

Figure S4. a) TEM image of MoS_2 QDs with the addition of H_2Q (3 μM), scale bar: 20 nm. b) the corresponding particle size distribution histograms.

Figure S5. a) The fluorescence decay curve of the MoS_2 QDs in the absence of H_2Q , b) the fluorescence decay curve of the MoS_2 QDs in the presence of H_2Q (3 μ M).

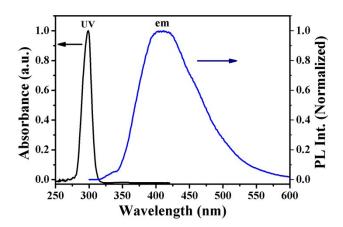
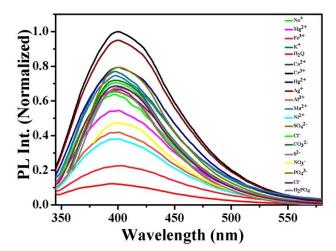



Figure S6. UV-vis spectrum of H₂Q and PL emission spectrum of MoS₂ QDs.

Figure S7. Normalized PL emission spectra of the hydroquinone in the presence of different ions (Cr³⁺, Ag⁺, Hg²⁺, K⁺, Mn²⁺, Ca²⁺, Na⁺, Mg²⁺, Al³⁺, Ni²⁺, Fe³⁺, NO₃⁻, SO₄²⁻, CO₃²⁻, Br⁻, S²⁻, PO₄³⁻, Cl⁻ and H₂PO₄⁻) in aqueous solution at the same concentration of 100 μ M.