## **Supporting Information**

A simple and effective strategy based on sodium gallate-exfoliated graphene for the simultaneous voltammetric determination of guaiacol and vanillin<sup>‡</sup>

Chenchen Li<sup>a</sup>, Ju Fu<sup>a</sup>, Xiaohong Tan<sup>a</sup>, Xinjian Song \*a,b and Qunfang Li<sup>a</sup>

<sup>a</sup> School of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, China

<sup>b</sup> Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

\* To whom correspondence should be addressed.
Tel: +86 718 8437531; Fax: +86 718 8437531;
E-mail address: whxjsong@163.com



Fig. S1. TEM images of GNs (A) and SG-GNs (B).



**Fig. S2.** XPS spectra of SG-GNs (A). High-resolution XPS spectra of C1s (B) and Na1s (C) of SG-GNs.



**Fig. S3.** Characterizations of (A) graphite powder and (B) SG-GNs(a), GNs(b) with XRD.



Fig. S4. UV of rGO (blue line), SG ( black line), SG-GNs (red line)



Fig. S5. CV curves of 40  $\mu$ M GUA (A) and VAN (B) on SG-GN/GCE with different scan rates of 20, 40, 70, 100, 130, 160, 200 mV·s<sup>-1</sup> (a $\rightarrow$ g); plots of peak current versus scan rates (v: 20–200 mV·s<sup>-1</sup>) for GUA (A1) and VAN (B1).



**Fig. S6.** Effects of pH value on the oxidation peak currents of 8  $\mu$ M VAN and 10  $\mu$ M GUA (A), accumulation potential on the oxidation peak currents of 8  $\mu$ M VAN and 10  $\mu$ M GUA (B), and accumulation time on the oxidation peak currents of 8  $\mu$ M VAN and 10  $\mu$ M GUA (C).

| Modified electrode                       | Linear range |         | LOD    |        |            |
|------------------------------------------|--------------|---------|--------|--------|------------|
|                                          | (µM)         |         | (µM)   |        | References |
|                                          | GUA          | VAN     | GUA    | VAN    |            |
| Pt/y-Al <sub>2</sub> O <sub>3</sub> /GCE | 0.05-30      |         | 0.0179 |        | [1]        |
| rGO/GCE                                  | 0.5-500      |         | 0.2    |        | [2]        |
| MWNTs-PDA@MIP/SWNT-<br>COOH/GCE          |              | 0.2-10  |        | 0.1    | [3]        |
| Ag-Pd/GO/GCE                             |              | 0.02-45 |        | 0.005  | [4]        |
| CPB/CNF/GCE                              |              | 75-750  |        | 0.14   | [5]        |
| AuNP-PAH/GCE                             |              | 0.9-15  |        | 0.055  | [6]        |
| TBAC-900/GCE                             |              | 5-1150  |        | 0.68   | [7]        |
| MFG/GCE                                  | 0.03-1       | 0.03-8  | 0.0013 | 0.001  | [8]        |
| SG-GN/GCE                                | 0.02-12      | 0.02-11 | 0.005  | 0.0045 | This work  |

 Table S1 Comparisons of the proposed SG-GN/GCE with previous reported

 electrochemical methods for GUA and VAN determination.

## References

- 1 J. Y. Sun, T. Gan, Y. P. Deng, Z. X. Shi and Z. Lv, Sens. Actuator B: Chem., 2015, 211, 339–345.
- 2 Y. Wu, M. Huang, N. Song and W. Hu, Anal. Methods, 2014, 6, 2729–2735.
- 3 W. Wu, L. Yang, F. Zhao and B. Zeng, Sens. Actuator B: Chem., 2017, 239, 481– 487.
- 4 J. Li, H. Feng, J. Li, J. Jiang, Y. Feng, L. He and D. Qian, *Electrochim. Acta*, 2015, **176**, 827–835.
- 5 G. Ziyatdinova, E. Kozlova, E. Ziganshina and H. Budnikov, *Monatsh. Chem.*, 2016, **147**, 191–200.
- 6 T. R. Silva, D. Brondani, E. Zapp and I. C. Vieira, *Electroanal.*, 2015, 27, 465–472.
- 7 V. Veeramani, R. Madhu, S.-M. Chen, P. Veerakumar, J. J. Syu and S. B. Liu, *New J. Chem.*, 2015, **39**, 9109–9115.
- T. Gan, Z. Shi, Y. Deng, J. Sun and H. Wang, *Electrochim. Acta*, 2014, 147, 157–166.