New Schiff base chromophores composed of salicylaldehyde and naphthalimide derivatives for ion sensor application

Han Yan, Kailiang Zhong, Yun Lu*

Key Laboratory of High Performance Polymer Materials and Technology of MOE, State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China

*Author to whom correspondence should be addressed: Nanjing University, Nanjing

210046, China, E-mail: yunlu@nju.edu.cn

Table of Contents

1. Crystallographic Data for NA-N.	P3
2. Atomic parameters for NA-N.	P4
3. Anisotropic displacement parameters for NA-N.	P7
4. NMR Spectra	P8

Formula sum	C19 H11 N3 O5
Formula weight	361.31 g/mol
Crystal system	monoclinic
Space-group	P 1 21 1 (4)
Cell parameters	a=8.5796(8) Å b=7.6309(6) Å c=11.7149(10) Å β=94.235(4)°
Cell ratio	a/b=1.1243 b/c=0.6514 c/a=1.3654
Cell volume	764.88(11) Å ³
Z	2
Calc. density	1.5687 g/cm ³
Meas. density	
Melting point	
RAII	0.1078
RObs	
Pearson code	mP76
Formula type	N3O5P11Q19
Wyckoff	238
sequence	aso
Formula sum	C14 H11 N3 O2
Formula weight	253.26 g/mol
Crystal system	triclinic
Space-group	P -1 (2)
Call noromators	a=8.1726(7) Å b=12.0345(12) Å c=14.2401(12) Å a=110.964(3)° β =103.662(3)°
Cen parameters	γ=98.181(3)°
Cell ratio	a/b=0.6791 b/c=0.8451 c/a=1.7424
Cell volume	1230.5(2) Å ³
Ζ	4
Calc. density	1.36699 g/cm ³
Meas. density	
Melting point	
RAII	0.1254
RObs	
Pearson code	aP120
Formula type	N2O3P11Q14
Wyckoff	i60
sequence	100

Table S1 Crystallographic Data for NA-N.

1 4010		1 1011110	puru			•		
Atom	Ox	. Wyck	. Site	e S.O .	F. x/a	y/b	z/c	U [Ų]
C1		2a	1		0.4082(6)	0.7547(6)	0.5731(5)	
C2		2a	1		0.2773(6)	1.0484(6)	0.5536(4)	
C3		2a	1		0.3636(6)	1.1026(7)	0.6621(4)	
C4		2a	1		0.3382(6)	1.2669(6)	0.7045(5)	
H4		2a	1		0.26730	1.34450	0.66410	0.0240
C5		2a	1		0.4176(7)	1.3195(8)	0.8077(5)	
H5		2a	1		0.39930	1.43310	0.83720	0.0320
C6		2a	1		0.5201(6)	1.2108(7)	0.8663(5)	
H6		2a	1		0.57320	1.24980	0.93570	0.0290
C7		2a	1		0.5492(6)	1.0398(7)	0.8252(4)	
C8		2a	1		0.6550(6)	0.9208(7)	0.8820(5)	
H8		2a	1		0.70990	0.95510	0.95180	0.0280
C9		2a	1		0.6798(7)	0.7587(7)	0.8392(5)	
H9		2a	1		0.75110	0.68100	0.87910	0.0310
C10		2a	1		0.5999(6)	0.7057(7)	0.7357(5)	
H10		2a	1		0.61830	0.59290	0.70520	0.0250
C11		2a	1		0.4950(6)	0.8174(7)	0.6789(4)	
C12		2a	1		0.4686(6)	0.9859(7)	0.7208(4)	
C13		2a	1		0.1541(6)	0.6743(7)	0.4124(5)	
H13		2a	1		0.15990	0.60020	0.47770	0.0240
C14		2a	1		0.0516(6)	0.7267(6)	0.2096(5)	
C15		2a	1		0.0724(5)	0.6170(7)	0.3049(4)	
C16		2a	1		0.0093(6)	0.4492(7)	0.3000(4)	
H16		2a	1		0.02400	0.37250	0.36380	0.0220
C17		2a	1		-0.0751(6	0.3953(7)	0.2014(5)	
C18		2a	1		-0.0964(6	0.5038(7)	0.1059(5)	
H18		2a	1		-0.15360	0.46380	0.03840	0.0280
C19		2a	1		-0.0338(6	0.6687(7)	0.1106(5)	
H19		2a	1		-0.04850	0.74420	0.04620	0.0290
N1		2a	1		0.2960(5)	0.8709(5)	0.5229(4)	
N2		2a	1		0.2176(5)	0.8260(6)	0.4168(4)	
N3		2a	1		-0.1452(5) 0.2221(6)	0.1981(4)	
01		2a	1		0.4278(4)	0.6101(5)	0.5322(3)	
O2		2a	1		0.1105(4)	0.8901(5)	0.2073(3)	
H2A		2a	1		0.148(6)	0.904(8)	0.275(5)	0.0340
03		2a	1		-0.1426(4) 0.1371(5)	0.2869(3)	
O4		2a	1		-0.2070(5) 0.1698(6)	0.1056(3)	
05		2a	1		0.1887(4)	1.1422(5)	0.4954(3)	
Atom	Ox.	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Ų]
C1A		2i	1		0.2879(4)	0.7515(3)	0.1079(2)	

Table S2 Atomic parameters for NA-N.

C2A	2i	1	0.3241(3)	0.5771(3)	-0.0177(2)	
C3A	2i	1	0.2460(3)	0.5396(3)	0.05398(19)	
C4A	2i	1	0.2273(3)	0.6436(3)	0.1295(2)	
C5A	2i	1	0.1539(4)	0.6370(3)	0.2061(2)	
H5A	2i	1	0.14420	0.70880	0.25900	0.0370
C6A	2i	1	0.0954(3)	0.5217(3)	0.2025(2)	
H6A	2i	1	0.04260	0.51390	0.25330	0.0340
C7A	2i	1	0.1119(4)	0.4171(3)	0.1264(2)	
H7A	2i	1	0.06930	0.33900	0.12550	0.0370
C8A	2i	1	0.1900(4)	0.4245(3)	0.0510(2)	
H8A	2i	1	0.20410	0.35320	-0.00030	0.0320
C9A	2i	1	0.3940(4)	0.7763(3)	-0.03585(19)	
C10A	2i	1	0.5958(4)	0.8599(3)	-0.0909(2)	
C11A	2i	1	0.4712(4)	0.9012(3)	-0.1432(2)	
H11A	2i	1	0.49930	0.94570	-0.18290	0.0340
C12A	2i	1	0.3047(4)	0.8772(3)	-0.1371(2)	
C13A	2i	1	0.7794(4)	0.8843(3)	-0.0939(2)	
H13A	2i	1	0.85470	0.86740	-0.03870	0.0620
H13B	2i	1	0.81920	0.97060	-0.08160	0.0620
H13C	2i	1	0.78410	0.83110	-0.16330	0.0620
C14A	2i	1	0.1626(4)	0.9211(3)	-0.1891(2)	
H14A	2i	1	0.05350	0.85700	-0.21910	0.0610
H14B	2i	1	0.19190	0.93960	-0.24570	0.0610
H14C	2i	1	0.14890	0.99550	-0.13670	0.0610
C1B	2i	1	0.9176(4)	0.3537(3)	0.4149(2)	
C2B	2i	1	0.7271(4)	0.2676(3)	0.4832(2)	
C3B	2i	1	0.6351(3)	0.3322(3)	0.42465(19)	
C4B	2i	1	0.7483(3)	0.3823(3)	0.38329(19)	
C5B	2i	1	0.6971(4)	0.4469(3)	0.3237(2)	
H5B	2i	1	0.77520	0.48180	0.29590	0.0340
C6B	2i	1	0.5283(4)	0.4591(3)	0.3057(2)	
H6B	2i	1	0.48890	0.50200	0.26380	0.0380
C7B	2i	1	0.4147(4)	0.4098(3)	0.3480(2)	
H7B	2i	1	0.29980	0.42060	0.33550	0.0380
C8B	2i	1	0.4675(4)	0.3453(3)	0.4079(2)	
H8B	2i	1	0.39030	0.31110	0.43660	0.0340
C9B	2i	1	1.0235(3)	0.2269(3)	0.5116(2)	
C10B	2i	1	1.1818(4)	0.1898(3)	0.6447(2)	
C11B	2i	1	1.2513(4)	0.1146(3)	0.5742(2)	
H11B	2i	1	1.33390	0.07420	0.59730	0.0340
C12B	2i	1	1.1986(4)	0.0992(3)	0.4699(2)	
C13B	2i	1	1.2316(4)	0.2113(3)	0.7591(2)	

H13D	2i	1	1.27750	0.29960	0.80300	0.0640
H13E	2i	1	1.32090	0.16810	0.77380	0.0640
H13F	2i	1	1.12900	0.18030	0.77540	0.0640
C14B	2i	1	1.2658(4)	0.0195(3)	0.3874(2)	
H14D	2i	1	1.18980	0.00290	0.31690	0.0560
H14E	2i	1	1.26750	-0.05830	0.39480	0.0560
H14F	2i	1	1.38390	0.06170	0.39660	0.0560
N1A	2i	1	0.3478(3)	0.7055(2)	0.02056(16)	
N2A	2i	1	0.2631(3)	0.8114(2)	-0.08278(16)	
N3A	2i	1	0.5585(3)	0.7959(2)	-0.03427(16)	
N1B	2i	1	0.8972(3)	0.2846(2)	0.47528(16)	
N2B	2i	1	1.0810(3)	0.1559(2)	0.43747(17)	
N3B	2i	1	1.0660(3)	0.2479(2)	0.61308(17)	
OlA	2i	1	0.2907(3)	0.8575(2)	0.15381(16)	
O2A	2i	1	0.3588(3)	0.51591(18)	-0.09457(14)	
O1B	2i	1	1.0503(2)	0.3835(2)	0.39670(15)	
O2B	2i	1	0.6735(3)	0.2082(2)	0.52737(16)	

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
C1	0.013(3)	0.018(3)	0.021(3)	-0.002(2)	0.003(2)	-0.001(3)
C2	0.016(3)	0.021(3)	0.018(3)	-0.002(2)	0.004(2)	0.003(2)
C3	0.016(3)	0.020(3)	0.016(3)	-0.004(2)	0.004(2)	-0.001(2)
C4	0.022(3)	0.016(3)	0.024(3)	0.002(2)	0.003(3)	0.002(2)
C5	0.031(3)	0.017(3)	0.033(4)	-0.001(3)	0.003(3)	-0.006(3)
C6	0.022(3)	0.026(3)	0.023(3)	-0.006(3)	-0.001(3)	-0.009(3)
C7	0.018(3)	0.020(3)	0.018(3)	-0.003(2)	0.004(2)	-0.002(3)
C8	0.020(3)	0.030(3)	0.020(3)	0.000(3)	-0.004(3)	-0.002(3)
C9	0.026(3)	0.026(3)	0.025(3)	0.003(3)	-0.004(3)	0.004(3)
C10	0.023(3)	0.016(3)	0.024(3)	0.001(2)	-0.002(3)	-0.005(2)
C11	0.017(3)	0.020(3)	0.013(3)	-0.003(2)	0.000(2)	-0.001(2)
C12	0.013(3)	0.013(3)	0.019(3)	-0.003(2)	0.003(2)	0.000(2)
C13	0.016(3)	0.020(3)	0.023(3)	-0.002(2)	-0.003(2)	0.001(2)
C14	0.017(3)	0.017(3)	0.027(3)	-0.003(2)	0.002(2)	0.000(3)
C15	0.012(3)	0.020(3)	0.018(3)	0.001(2)	0.000(2)	-0.005(3)
C16	0.017(3)	0.022(3)	0.017(3)	0.002(2)	0.001(2)	0.000(2)
C17	0.019(3)	0.017(3)	0.022(3)	-0.004(2)	0.002(2)	-0.005(2)
C18	0.021(3)	0.031(3)	0.019(3)	0.000(3)	-0.001(3)	-0.004(3)
C19	0.024(3)	0.027(3)	0.019(3)	-0.001(3)	-0.004(2)	0.002(3)
N1	0.018(2)	0.018(2)	0.014(2)	-0.0040(19)	-0.0054(19)	-0.0041(19)
N2	0.021(3)	0.025(3)	0.014(2)	0.001(2)	-0.002(2)	-0.004(2)
N3	0.023(3)	0.030(3)	0.029(3)	-0.005(2)	0.000(2)	-0.006(3)
01	0.025(2)	0.021(2)	0.022(2)	-0.0013(18)	0.0006(17)	-0.0069(18)
02	0.037(2)	0.026(2)	0.020(2)	-0.004(2)	-0.0071(19)	0.0055(18)
03	0.039(2)	0.024(2)	0.028(2)	-0.009(2)	0.0030(19)	0.000(2)
O4	0.064(3)	0.043(3)	0.026(2)	-0.028(3)	-0.009(2)	-0.010(2)
O5	0.028(2)	0.023(2)	0.022(2)	0.0038(19)	-0.0066(17)	0.003(2)

 Table S3 Anisotropic displacement parameters for NA-N.

Fig. S1. The ¹H NMR spectrum of NA-F.

Fig. S2. The ¹³C NMR spectrum of NA-F.

Fig. S3. The ¹H NMR spectrum of NA-M.

Fig. S4. The ¹³C NMR spectrum of NA-M.

Fig. S5. The ¹H NMR spectrum of NA-N.

Fig. S6. The ¹³C NMR spectrum of NA-N.

Fig. S7. The ¹H NMR spectrum of NA-EF.

Fig. S8. The ¹³C NMR spectrum of NA-EF.

Fig. S9. The ¹H NMR spectrum of NA-EM.

Fig. S10. The ¹³C NMR spectrum of NA-EM.

Fig. S11. The ¹H NMR spectrum of NA-EN.

Fig. S12. The ¹³C NMR spectrum of NA-EN.