Supplementary Information

Sample pre-treatment free electrochemical immunosensor with negative electro-pulsion for quantitative detection of acrylamide in coffee, cocoa and prune juice

Pei Ying Lau ^a, Khan Loon Ng ^{a, b}, Nor Azah Yusof ^c, Guozhen Liu ^d, Yatimah Alias ^a, Sook Mei Khor ^{a,*}

^a Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

^b Wipro Skin Research and Innovation Centre, No. 7 Persiaran Subang Permai, Taman Perindustrian Subang, 47610 Selangor, Malaysia.

^c Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

^d Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

*Corresponding author at: Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

E-mail address: naomikhor@um.edu.my (S.M. Khor)

Fig S1. Corresponding zoom of Fig 1(a) – Cyclic voltammograms of glassy carbon plate (GCP) after each modification steps from bare electrode to surface 7 in PB containing 1 mM $[Fe(CN)_6]^{3-/4-}$ and 0.05 M KCl with scan rate of 100 mV s⁻¹.

Fig S2. Corresponding zoom of Fig 1(a) – Cyclic voltammograms of glassy carbon plate (GCP) after each modification steps from surface 4 to surface 7 in PB containing 1 mM $[Fe(CN)_6]^{3-/4-}$ and 0.05 M KCl with scan rate of 100 mV s⁻¹.

Fig S3. FT-IR spectra of immunosensor surface, from bare GCP to surface 7 after each modification step $[NH_2 \text{ (green)}, \text{ amide N-H (light green)}, \text{ aromatic C-H (orange)}, C=O (light blue), aromatic C-C (purple), ether C-O (yellow) and NO₂ (red)].$

Fig S4. Stability study of the developed immunosensor based on the decrease in resistivity from day 1 to day 28, tested in 10 μ g mL⁻¹ of free acrylamide in PBS, pH 7.4 after storage of immunosensor at 4°C kept in PBS, pH 7.4.

Electrode	R_s/Ω	R_{ct}/Ω	Q/Mh _o	n	Cdl/F
Bare GCP	16.496	9.252×10 ²	2.576×10 ⁻⁶	0.779	8.903×10 ⁻⁵
Surface 1	13.219	1.056×10 ⁵	4.778×10 ⁻⁶	0.774	3.914×10 ⁻⁶
Surface 2	36.095	2.785×10 ³	5.747×10 ⁻⁶	0.740	1.343×10 ⁻⁶
Surface 3	15.911	1.235×10 ⁵	1.975×10 ⁻⁶	0.826	1.468×10^{-6}
Surface 4	43.067	2.280×10 ⁵	5.818×10 ⁻⁶	0.843	6.133×10 ⁻⁶
Surface 5	28.296	4.207×10 ⁵	1.550×10 ⁻⁶	0.845	1.433×10 ⁻⁶
Surface 6	24.467	7.604×10 ⁵	1.251×10 ⁻⁶	0.886	1.244×10 ⁻⁶
Surface 7	18.947	5.129×10 ⁵	1.417×10 ⁻⁶	0.855	1.343×10 ⁻⁶

Table S1. Values of equivalent circuit parameters of fitting curves for the fabrication of electrochemical impedance immunosensor interface by z-view.

	Factor 1	Factor 2	Factor 3	Response 1	
Run	A:Pulsing	B:Pulsing	C:Concentration of	Difference in resistivity	
	Duration	Potential	Acrylamide		
	min	mV	μg mL ⁻¹	kΩ	
1	10	-700	30	161.65	
2	5	-800	30	58.67	
3	10	-900	30	113.5	
4	10	-800	15	163.06	
5	5	-800	0	15.2276	
6	10	-800	15	187.35	
7	10	-900	0	12.1243	
8	10	-700	0	12.008	
9	15	-900	15	95.176	
10	5	-900	15	69.55	
11	15	-700	15	64.044	
12	10	-800	15	166.96	
13	5	-700	15	45.804	
14	10	-800	15	187.117	
15	15	-800	0	15.4522	
16	10	-800	15	164.14	
17	15	-800	30	225.812	

Table S2. Box-Behnken experimental design for three factors used in displacement condition

 and response.

Source	Sum of Squares	df	Mean Square	F-value	p-value
Model	80250.07	9	8916.67	16.22	0.0007 significant
A- Pulsing Duration	5577.40	1	5577.40	10.15	0.0154
B- Pulsing Potential	5.86	1	5.86	0.0107	0.9207
C-Concentration of Acrylamide	31855.39	1	31855.39	57.95	0.0001
AB	13.64	1	13.64	0.0248	0.8793
AC	6965.35	1	6965.35	12.67	0.0092
BC	582.41	1	582.41	1.06	0.3376
A ²	10761.73	1	10761.73	19.58	0.0031
B^2	12518.20	1	12518.20	22.77	0.0020
C^2	8292.59	1	8292.59	15.09	0.0060
Residual	3847.74	7	549.68		
Lack of Fit	3231.37	3	1077.12	6.99	0.0455 significant
Pure Error	616.37	4	154.09		
Cor Total	84097.81	16			

Table S3. Analysis of variance (ANOVA) for quadratic model.