Supplementary Information

Metronidazole Non-Enzymatic Colorimetric Sensors Strip

Based on Melamine-Functionalized Gold Nanoparticles

Assembled Polyamide Nanofibers Membranes

Mohammed Awad Abedalwafa^{a,b}, Yan Li^{a,*}, Chunfang Ni^a, Gang Yang^a and Lu

Wang^{a,*}

^a Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 200336, China. E-mail addresses: yanli@dhu.edu.cn (Y. LI) or wanglu@dhu.edu.cn (L. WANG)

^b Department of Technical Textile, Faculty of Industries Engineering and Technology, University of Gezira, Wad Madani 21111, Sudan.

1. Supplementary Figures

Fig. S1. The hydrogen bond between MTZ and MA.

Fig. S2. Detection of MTZ (500µg/mL) based MA@GNPs solution (a) MA@GNPs, (b) MTZ-GNPs and (c) MTZ-MA@GNPs.

Fig. S3. The zeta potential result of GNPs and Mel@GNPs.

Fig. S4. Nanofiber diameter distribution of (a) electrospun PA6 NFMs (b) MA@GNPs NFMs and (c) MTZ-MA@GNPs NFMs.

Fig. S5. (a) UV-Vis absorption spectra of colorimetric strips $MA_x@GNPs-PA6$ with MA concentrations (0, 1.2, 2.4, 3.6, and 4.8 nM), and (b) the red color ratio and the color difference values of colorimetric strips before and after incubation for 20 min with 100 µg/mL of MTZ as a function of MA concentrations; the corresponding optical images (inset)

Fig. S6. Optimization of metronidazole sensing conditions: the color difference values and the red color ratio as a function of (a) pH and (b) time; (c) and (d) the corresponding optical images are displayed

Fig. S7. Visual color changes of the MA@GNPs upon addition of different concentrations of MTZ (0, 2, 5, 10, 20, 40, 60, 80, and 100 nM)

Fig. S8. Visual color changes of the MA@GNPs upon addition of different antibiotics (100 nM)

Fig. S9. Using ImageJ software to calculate the Red Green Blue (RGB) values from the photographs of strips

2. Supplementary Tables

			Sam	ıples			
$C_{IMAI} nM$	(Control Samples	7	Detected samples			
. ,	R	G	В	R	G	В	
0	254.6±1.8	144.1±7.3	160.9±7.4	243.0±13.1	147.1±15.3	162.6±15.3	
1.2	254.9±0.1	154.2±8.8	172.0±6.8	167.9±10.3	122.6±11.3	209.1±11.0	
2.4	254.3 ± 0.7	151.7±6.2	153.9±4.4	161.5±14.1	170.0±16.6	214.3±14.0	
3.6	$254.2{\pm}0.8$	155.4±4.7	165.8±5.3	160.7±15.0	175.0±14.8	208.7±15.0	
4.8	254.8±0.2	163.1±7.3	177.2±6.6	165.8±16.1	180.4±16.0	214.4±15.5	

Table S1. The R, G, and B values of Ma_x@GNPs-PA6 before and after MTZ detection (100 nM)

Table C2	The D	C and P	values of		VDc DA6	hafana and	after MT	7 detection	(100 mM	undar
1 ubie 52.	тие к,	U , <i>unu</i> D	values oj	$mu_{2,4}w_{01}$	VI 5-1 AU	vejore ana	ujier mi i		(100 mm)	unuer

nH value		Samples	
pii value	R	G	В
Control	251.2±3.5	164±4.3	173.3±5.2
7	197.2±6.3	149±5.3	218±5.4
8	182.3±4.2	147±4.6	210±7.2
9	194.5±8.2	140±5.6	207±4.6
10	225.4±6.3	165±6.3	$245{\pm}4.2$
11	$224.0{\pm}5.8$	163±5.8	$236{\pm}5.3$

different pH conditions.

Table S3. The R, G, and B values of Ma2.4@GNPs-PA6 before and after MTZ detection (100 nM) for different

time.						
C nM		Samples				
$C_{[MTZ]}$ nm	R	G	В			
Control	254.2±0.6	165±4.3	160.3±5.2			
2.5	180±5.3	120±5.2	177±5.2			
5	141±6.2	$108{\pm}4.5$	170±6.3			
10	140±3.6	107±8.2	168±4.8			
15	132±7.2	107±4.2	169±3.9			
20	94±9.2	67±4.3	121±7.5			

Table S4. The R, G, and B values of Ma_{2.4}@GNPs-PA6 before and after the detection of MTZ with different

concentrations under optimal condition.

Time (min)	Samples					
1 time (min)	R	G	В			
Control	254.1±0.8	183.5±4.3	177.3±5.2			
2	253.2±0.9	188±6.3	193±5.2			
5	226±6.5	170±5.89.2	247±6.3			
10	219±5.2	172±4.2	$254{\pm}7.5$			
20	213±4.9	185±7.2	254±5.3			
40	207±8.2	170±4.3	252±3.6			
60	181±4.8	1663.7±7.2	234±6.5			
80	155±5.2	138±4.2	202±5.7			
100	144±5.8	116±8.2	186±7.3			

(100 nM).						
Antibiotics	Samples					
Antibiotics	R	G	В			
Control	254.1±0.8	183.5±4.3	177.3±5.2			
Cephalexin (CEF)	230±5.6	181±3.5	166±2.8			
Norfloxacin (NRFX)	232±6.4	175±5.7	165±8.5			
Penicillin G (PC-G)	210±4.6	141±7.6	135±5.7			
Sulfadiazine (SDZ)	230±6.3	175±6.3	165±7.6			
Tetracycline (OTC)	216±3.7	141±3.8	140±6.7			
MTZ	113±5.8	135±8.2	94±7.3			

Table S5. The R, G, and B values of Ma_{2.4}@GNPs-PA6 before and after the detection of different antibiotics

Table CC	Determination	AMTT :	the driveline	maton and will
<i>I uble So.</i>	Determination		ine arinking	water and mitk

Sample	Added (nM)	Found (nM) ^a	ICP-AES (nM)ª	Recovery (%)	RSD (%)
	2.00	2.08±0.04	1.94±0.04	104.20	3.40
	5.00	4.99±0.14	$5.01{\pm}0.08$	99.84	2.76
Drinking water	10.0	$9.96{\pm}0.04$	9.98±0.18	99.80	1.83
	20.0	20.04±0.28	19.84±0.20	100.18	1.38
	40.0	$40.05{\pm}0.94$	$40.06{\pm}0.96$	100.14	2.33
	2.00	1.92±0.09	$1.90{\pm}0.04$	95.90	4.66
	5.00	4.96±0.14	4.99±0.15	99.24	2.74
Milk	10.0	9.92±0.18	10.08±0.12	99.22	1.76
	20.0	19.94±0.22	20.02±0.11	99.68	1.12
	40.0	39.69±1.17	40.16±1.15	99.22	2.96

a Average value of five determination \pm standard deviation

Table S7. An	overview on	recently rep	orted methods	for determinat	ion of MTZ

Method	Assay time (min)	Linear range (µM)	Limit of detection (µM)	Ref.
Luminescent	N/A	10-60	3.00	1
Luminescent	<60	0.25-300	0.10	2
UHPLC-MS/MS ^a	1.3	0.05-0.2	0.03	3
Electrochemical sensor	20	0.05-1000	0.12	4
Electrochemical sensor	2	0.5-1600	58.0	5
Surface-enhanced Raman spectroscopy	N/A	30-300	6.43	6
Electrochemistry	N/A	0.05-1.00	0.02	7
Fluorescence	N/A	0.2-15	0.15	8
Photoelectrochemical immunoassay	30	0.01-500	0.005	9
UPLC-MS/MS	N/A	0.001-0.234	0.0005	10
Colorimetric based nanofiber	2.5	0.00-0.1	0.002	our work

a. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry

3. Extraction of RGB values and the calculation process

- 1. The ImageJ software was used to extract the Red Green Blue (RGB) data from the photographs of strips before (R_1, G_1, B_1) and after (R_2, G_2, B_2) MTZ detection.
- First open the photograph of strips using ImageJ software as shown in Fig. S9a
- Then select the Rectangular Selection tool in the ImageJ toolbar and drag a rectangle over the image of the specific strip (Fig. S9b).
- Choose Analyze > Histogram (Fig. S9b), then click RGB (Fig. S9c). This sets to measure R, G, and B for only the highlighted pixels within the rectangular selection.
- The data can be recorded or saved in CSV file.
- 2. ΔR , ΔG , and ΔB values were attained from differences between RGB values before (R₁, G₁, B₁) and after (R₂, G₂, B₂) MTZ detections.
- $\Delta R = R_1 R_2$
- $\Delta G = G_1 G_2$
- $\Delta B = B_1 B_2$
- 3. The color difference (ΔC) was calculated using the Equation¹¹

$$\Delta C = \sqrt{2(R_1 - R_2)^2 + 4(G_1 - G_2)^2 + 3(B_1 - B_2)^2 + \frac{r^2((R_1 - R_2) - (B_1 - B_2))}{256}}$$

Where r is

$$r = \frac{R_1 + R_2}{2}$$

4. The red color ratio was calculated using the Equation

The red color ratio
$$=\frac{R}{R+B}$$

4. Supplementary references

- 1. C. Li, F. Zhang, X. Li, G. Zhang and Y. Yang, J. Lumin., 2019, 205, 23-29.
- 2. N. Xu, H.-W. Li and Y. Wu, Anal. Chim. Acta, 2017, 958, 51-58.

- 3. X. Li, Y. Ke, Y. Wang, C. Wang, D. Ye, X. Hu, L. Zhou and X. Xia, *Molecules* 2018, 23, 3350.
- 4. Y. Gu, X. Yan, C. Li, B. Zheng, Y. Li, W. Liu, Z. Zhang and M. Yang, *Biosens. Bioelectron.*, 2016, 77, 393-399.
- 5. K. Nejati and K. Asadpour-Zeynali, *Materials Science and Engineering: C*, 2014, **35**, 179-184.
- 6. S. Benítez–Martínez, Á. I. López-Lorente and M. Valcárcel, *Microchem. J.*, 2015, **121**, 6-13.
- 7. D. Chen, J. Deng, J. Liang, J. Xie, C. Hu and K. Huang, Sens. Actuators, B, 2013, 183, 594-600.
- 8. M. Mehrzad-Samarin, F. Faridbod, A. S. Dezfuli and M. R. Ganjali, *Biosens. Bioelectron.*, 2017, **92**, 618-623.
- 9. X. Li, Y. Yuan, X. Pan, L. Zhang and J. Gong, *Biosens. Bioelectron.*, 2019, 123, 7-13.
- 10. N. Lu, T. Wang, P. Zhao, L. Zhang, X. Lun, X. Zhang and X. Hou, *Anal. Bioanal. Chem.*, 2016, **408**, 8515-8528.
- 11. D. H. Alman, Color Res Appl, 1993, 18, 137-139.