Electrostatic self-assembly route to prepare C-dots/gold nanoclusters dual-emission ratiometric optical thermometry in living cells

Yunxiao Jia^{1,3}, Xiaojie Zhang³, Chunxia Yin³, Xun Zhang¹, Jiaping Zhang², Xinwai Wang², Jingwei Xin^{2*}

¹College of Chemistry, Jilin University, Changchun, 130012, P.R. China ²Department of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, P.R. China

³Department of Gynecology and Obstertrics, Changchun Obstetrics-Gynecology Hospital, Changchun, Jilin, 130042, P.R. China

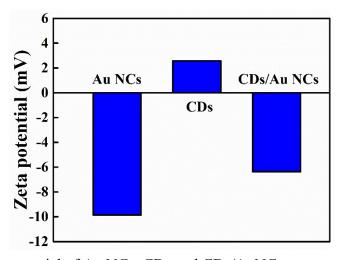


Fig S1. The Zeta potential of Au NCs, CDs and CDs/AuNCs.

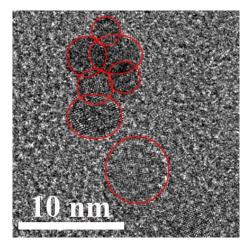
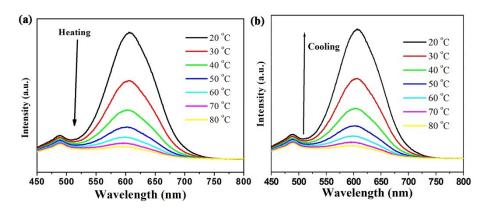
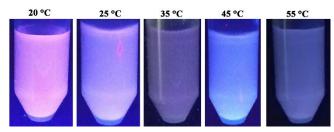




Fig S2. The high resolution TEM image of CDs/AuNCs hybrid nanomaterials.

Fig S3. Temperature dependence of the emission intensity from GSH-AuNCs in aqueous solution. (a) Fluorescence emission spectra measured under the excitation of 430 nm with the increase of the temperature from 20 to 80 °C; (b) fluorescence emission spectra measured under the excitation of 430 nm with the decrease of the temperature from 80 to 20 °C (from bottom to top).

Fig S4. The fluorescent images of CDs/AuNCs hybrid nanomaterials in aqueous solution with 20 °C, 25 °C, 35 °C, 45 °C and 55 °C.