Supporting Information

## Analysis of multiclass cyanotoxins (microcystins, anabaenopeptins, cylindrospermopsin and anatoxins) in lake waters using on-line SPE liquid chromatography high-resolution Orbitrap mass spectrometry

Audrey Roy-Lachapelle<sup>1,2</sup>, Sung Vo Duy<sup>1</sup>, Gabriel Munoz<sup>1</sup>, Quoc Tuc Dinh<sup>1</sup>, Emmanuelle Bahl<sup>1</sup>, Dana F. Simon<sup>1</sup>, Sébastien Sauvé<sup>1\*</sup>

<sup>1</sup> Department of Chemistry, Université de Montréal, Montreal, Québec H3C 3J7, Canada.

<sup>2</sup> Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada.

\*Corresponding author. Phone: 514-343-6710; E-mail: <u>sebastien.sauve@umontreal.ca</u>. Department of Chemistry, Université de Montréal, Montreal, Québec H3C 3J7, Canada

## Contents

## Tables

**Table S1.** Summary of the method accuracy and precision investigated at 4 spike levels in matrixmatched lake surface water.

**Table S2.** Details on semi-quantified concentrations of qualitatively detected MCs from the present survey.

## Figures

**Figure S1.** Improvement in analyte identification using high-resolution MS/MS for difficult-tomeasure compounds, illustrated for MC-LW and MC-LA.

**Figure S2.** Extracted UHPLC-HRMS chromatograms in full scan MS mode and corresponding mass spectrum for qualitatively detected peak m/z 1085.5700 (observed m/z: 1085.5675) in surface water from Lake Memphrémagog.

|                          | Accuracy (%)<br>Spike level (ng L-1)                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |              |             | Intra-day precision (RSD, %)<br>Spike level (ng L <sup>-1</sup> )                                                                                       |                                                                                                                             |      | Inter-day precision (RSD, %)<br>Spike level (ng L <sup>-1</sup> ) |                                                                          |                                              |      |     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|------|-----|
| Cyanotoxins              |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |              |             |                                                                                                                                                         |                                                                                                                             |      |                                                                   |                                                                          |                                              |      |     |
|                          | 75                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                              | 200          | 800         | 75                                                                                                                                                      | 120                                                                                                                         | 200  | 800                                                               | 75                                                                       | 120                                          | 200  | 800 |
| CYN                      | <loq< td=""><td><loq< td=""><td><math>86 \pm 9</math></td><td><math>103 \pm 5</math></td><td><loq< td=""><td><loq< td=""><td>10</td><td>4.5</td><td><loq< td=""><td><loq< td=""><td>10.5</td><td>7.2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><math>86 \pm 9</math></td><td><math>103 \pm 5</math></td><td><loq< td=""><td><loq< td=""><td>10</td><td>4.5</td><td><loq< td=""><td><loq< td=""><td>10.5</td><td>7.2</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | $86 \pm 9$   | $103 \pm 5$ | <loq< td=""><td><loq< td=""><td>10</td><td>4.5</td><td><loq< td=""><td><loq< td=""><td>10.5</td><td>7.2</td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td>10</td><td>4.5</td><td><loq< td=""><td><loq< td=""><td>10.5</td><td>7.2</td></loq<></td></loq<></td></loq<> | 10   | 4.5                                                               | <loq< td=""><td><loq< td=""><td>10.5</td><td>7.2</td></loq<></td></loq<> | <loq< td=""><td>10.5</td><td>7.2</td></loq<> | 10.5 | 7.2 |
| ANA-a                    | $98 \pm 4$                                                                                                                                                                                                                                                                   | $101 \pm 7$                                                                                                                                                                                                                                      | $96 \pm 7$   | $103 \pm 2$ | 4.6                                                                                                                                                     | 7.2                                                                                                                         | 7.6  | 2.3                                                               | 5.5                                                                      | 6.5                                          | 7.9  | 4.7 |
| HANA-a                   | $90 \pm 4$                                                                                                                                                                                                                                                                   | $94 \pm 4$                                                                                                                                                                                                                                       | $85 \pm 4$   | $97 \pm 2$  | 4                                                                                                                                                       | 4.8                                                                                                                         | 4.5  | 2.3                                                               | 7.1                                                                      | 6.6                                          | 4.5  | 5.3 |
| AP-A                     | $96 \pm 9$                                                                                                                                                                                                                                                                   | $105 \pm 11$                                                                                                                                                                                                                                     | $107 \pm 7$  | $99 \pm 3$  | 9.4                                                                                                                                                     | 10.9                                                                                                                        | 6.6  | 3.3                                                               | 13.5                                                                     | 8                                            | 5.4  | 5.2 |
| AP-B                     | $103 \pm 7$                                                                                                                                                                                                                                                                  | $101 \pm 7$                                                                                                                                                                                                                                      | $92 \pm 4$   | $98\pm8$    | 7                                                                                                                                                       | 6.8                                                                                                                         | 4.8  | 7.9                                                               | 8.2                                                                      | 6.4                                          | 4.4  | 6.9 |
| [Asp <sup>3</sup> ]MC-RR | $94 \pm 7$                                                                                                                                                                                                                                                                   | $86 \pm 5$                                                                                                                                                                                                                                       | $81 \pm 5$   | $86 \pm 4$  | 7.9                                                                                                                                                     | 5.9                                                                                                                         | 6.4  | 4.8                                                               | 12.1                                                                     | 7.5                                          | 5.1  | 6.8 |
| MC-RR                    | $86 \pm 3$                                                                                                                                                                                                                                                                   | $82 \pm 3$                                                                                                                                                                                                                                       | $81 \pm 4$   | $91 \pm 1$  | 3                                                                                                                                                       | 4.1                                                                                                                         | 4.6  | 1.2                                                               | 8.8                                                                      | 6.6                                          | 4.6  | 4   |
| MC-YR                    | <loq< td=""><td><math>106 \pm 7</math></td><td><math>104 \pm 6</math></td><td><math>102 \pm 5</math></td><td><loq< td=""><td>6.4</td><td>6.2</td><td>4.9</td><td><loq< td=""><td>5.9</td><td>6.8</td><td>4.9</td></loq<></td></loq<></td></loq<>                             | $106 \pm 7$                                                                                                                                                                                                                                      | $104 \pm 6$  | $102 \pm 5$ | <loq< td=""><td>6.4</td><td>6.2</td><td>4.9</td><td><loq< td=""><td>5.9</td><td>6.8</td><td>4.9</td></loq<></td></loq<>                                 | 6.4                                                                                                                         | 6.2  | 4.9                                                               | <loq< td=""><td>5.9</td><td>6.8</td><td>4.9</td></loq<>                  | 5.9                                          | 6.8  | 4.9 |
| MC-HtyR                  | <loq< td=""><td><math>112 \pm 7</math></td><td><math>113 \pm 5</math></td><td><math>107 \pm 3</math></td><td><loq< td=""><td>6.1</td><td>4.7</td><td>2.6</td><td><loq< td=""><td>5.9</td><td>4.8</td><td>4.4</td></loq<></td></loq<></td></loq<>                             | $112 \pm 7$                                                                                                                                                                                                                                      | $113 \pm 5$  | $107 \pm 3$ | <loq< td=""><td>6.1</td><td>4.7</td><td>2.6</td><td><loq< td=""><td>5.9</td><td>4.8</td><td>4.4</td></loq<></td></loq<>                                 | 6.1                                                                                                                         | 4.7  | 2.6                                                               | <loq< td=""><td>5.9</td><td>4.8</td><td>4.4</td></loq<>                  | 5.9                                          | 4.8  | 4.4 |
| MC-LR                    | $100 \pm 14$                                                                                                                                                                                                                                                                 | $102 \pm 9$                                                                                                                                                                                                                                      | $99 \pm 4$   | $107 \pm 6$ | 13.7                                                                                                                                                    | 8.9                                                                                                                         | 3.8  | 5.2                                                               | 10.2                                                                     | 6.8                                          | 4.2  | 4.7 |
| [Asp <sup>3</sup> ]MC-LR | $101 \pm 7$                                                                                                                                                                                                                                                                  | $100 \pm 5$                                                                                                                                                                                                                                      | $94 \pm 2$   | $97 \pm 5$  | 6.8                                                                                                                                                     | 5.5                                                                                                                         | 2.5  | 5.4                                                               | 6.6                                                                      | 5.1                                          | 3.1  | 4.9 |
| MC-HilR                  | $94 \pm 11$                                                                                                                                                                                                                                                                  | $99 \pm 6$                                                                                                                                                                                                                                       | $100 \pm 5$  | $101 \pm 6$ | 12.2                                                                                                                                                    | 6.1                                                                                                                         | 4.6  | 6                                                                 | 9                                                                        | 6.1                                          | 6.2  | 5   |
| MC-WR                    | <loq< td=""><td><math>93 \pm 16</math></td><td><math>102 \pm 5</math></td><td><math>93 \pm 6</math></td><td><loq< td=""><td>16.9</td><td>5.1</td><td>6.1</td><td><loq< td=""><td>12.8</td><td>6.7</td><td>5.9</td></loq<></td></loq<></td></loq<>                            | $93 \pm 16$                                                                                                                                                                                                                                      | $102 \pm 5$  | $93 \pm 6$  | <loq< td=""><td>16.9</td><td>5.1</td><td>6.1</td><td><loq< td=""><td>12.8</td><td>6.7</td><td>5.9</td></loq<></td></loq<>                               | 16.9                                                                                                                        | 5.1  | 6.1                                                               | <loq< td=""><td>12.8</td><td>6.7</td><td>5.9</td></loq<>                 | 12.8                                         | 6.7  | 5.9 |
| MC-LA                    | $97 \pm 10$                                                                                                                                                                                                                                                                  | $94 \pm 8$                                                                                                                                                                                                                                       | $89 \pm 7$   | $100 \pm 2$ | 9.9                                                                                                                                                     | 8.6                                                                                                                         | 7.3  | 2.5                                                               | 10.6                                                                     | 7.9                                          | 7.5  | 4.7 |
| MC-LY                    | <loq< td=""><td><math>85 \pm 41</math></td><td><math display="block">121\pm20</math></td><td><math>106 \pm 5</math></td><td><loq< td=""><td>48.4</td><td>16.1</td><td>4.3</td><td><loq< td=""><td>31.3</td><td>11.7</td><td>5.6</td></loq<></td></loq<></td></loq<>          | $85 \pm 41$                                                                                                                                                                                                                                      | $121\pm20$   | $106 \pm 5$ | <loq< td=""><td>48.4</td><td>16.1</td><td>4.3</td><td><loq< td=""><td>31.3</td><td>11.7</td><td>5.6</td></loq<></td></loq<>                             | 48.4                                                                                                                        | 16.1 | 4.3                                                               | <loq< td=""><td>31.3</td><td>11.7</td><td>5.6</td></loq<>                | 31.3                                         | 11.7 | 5.6 |
| MC-LW                    | <loq< td=""><td><math>100 \pm 7</math></td><td><math>102 \pm 11</math></td><td><math>94 \pm 5</math></td><td><loq< td=""><td>7.4</td><td>11.1</td><td>5.8</td><td><loq< td=""><td>10.5</td><td>9.4</td><td>6</td></loq<></td></loq<></td></loq<>                             | $100 \pm 7$                                                                                                                                                                                                                                      | $102 \pm 11$ | $94 \pm 5$  | <loq< td=""><td>7.4</td><td>11.1</td><td>5.8</td><td><loq< td=""><td>10.5</td><td>9.4</td><td>6</td></loq<></td></loq<>                                 | 7.4                                                                                                                         | 11.1 | 5.8                                                               | <loq< td=""><td>10.5</td><td>9.4</td><td>6</td></loq<>                   | 10.5                                         | 9.4  | 6   |
| MC-LF                    | <loq< td=""><td><math>107 \pm 17</math></td><td><math>106 \pm 14</math></td><td><math>106 \pm 8</math></td><td><loq< td=""><td>16.3</td><td>13.1</td><td>7.2</td><td><loq< td=""><td>18.6</td><td>11.9</td><td>5.4</td></loq<></td></loq<></td></loq<>                       | $107 \pm 17$                                                                                                                                                                                                                                     | $106 \pm 14$ | $106 \pm 8$ | <loq< td=""><td>16.3</td><td>13.1</td><td>7.2</td><td><loq< td=""><td>18.6</td><td>11.9</td><td>5.4</td></loq<></td></loq<>                             | 16.3                                                                                                                        | 13.1 | 7.2                                                               | <loq< td=""><td>18.6</td><td>11.9</td><td>5.4</td></loq<>                | 18.6                                         | 11.9 | 5.4 |

**Table S1.** Summary of the method accuracy (%) and precision (relative standard deviation, RSD %) investigated at 4 spike levels in lake surface water (75, 120, 200 and 800 ng L<sup>-1</sup>).

|                     | [M(O) <sup>1</sup> ,Glu(OCH <sub>3</sub> ) <sup>6</sup> ]MC-LR | [ADMAdda <sup>5</sup> , Dha <sup>7</sup> ]MC-LR | MC-HphHty |
|---------------------|----------------------------------------------------------------|-------------------------------------------------|-----------|
| Lac Juneau          | ND                                                             | ND                                              | ND        |
| Lac aux Bouleaux    | 41                                                             | ND                                              | ND        |
| Lac Moffatt         | ND                                                             | ND                                              | ND        |
| Roxton Pond         | 34                                                             | ND                                              | ND        |
| Reservoir Choinière | ND                                                             | ND                                              | ND        |
| Lac Brome           | ND                                                             | ND                                              | ND        |
| Lac Memphremagog    | 7500                                                           | 1700                                            | 1500      |
| Lac Waterloo        | ND                                                             | ND                                              | ND        |
| Lac à la Tortue     | ND                                                             | ND                                              | ND        |
| Lac McKay           | ND                                                             | ND                                              | ND        |
| Lac Phonegamook     | ND                                                             | ND                                              | ND        |
| Lac aux Cygnes      | ND                                                             | ND                                              | ND        |
| Lac René            | ND                                                             | ND                                              | ND        |
| Lac des Iles        | ND                                                             | ND                                              | ND        |
| Muskrat Lake, ON    | ND                                                             | 17                                              | 15        |
| Lac Mimi            | ND                                                             | ND                                              | ND        |

**Table S2.** Details on semi-quantified concentrations (ng L<sup>-1</sup>) of qualitatively detected MCs from the present survey (ND: analyte not detected).

**Figure S1.** Improvement in analyte identification using high-resolution MS/MS for difficult-tomeasure compounds, illustrated for MC-LW and MC-LA. The high-resolution MS/MS fragment ions followed for MC-LW and MC-LA in PRM (Table S2) correspond to  $[M+H-134]^+$  (loss of the Adda fragment). MC-LW (left panels) was analyzed in non-spiked surface water using Full Scan (**a**) *vs.* PRM (**b**), and in surface water spiked at 50 ng L<sup>-1</sup> using Full Scan (**c**) *vs.* PRM (**d**). MC-LA (right panels) was analyzed in non-spiked surface water using Full Scan (**e**) *vs.* PRM (**f**), and in surface water spiked at 50 ng L<sup>-1</sup> using Full Scan (**g**) *vs.* PRM (**h**).



MC-LW

MC-LA

**Figure S2.** Extracted UHPLC-HRMS chromatograms in full scan MS mode and corresponding mass spectrum for qualitatively detected peak m/z 1085.5700 (observed m/z: 1085.5675) in surface water from Lake Memphrémagog. A mass tolerance of  $\pm$  5 ppm was applied. Tentative candidate: [M(O)<sup>1</sup>, Glu(OMe)<sup>6</sup>]MC-LR.

