Highly Sensitive Detection of Hg2+ Using Covalent Linking Single-strand DNA to the Surface of Graphene Oxide with Co-anchor Strand

Li Gao^{a,b*}, Cheng Liu^b, Raoqi Li^b, Ni Xia^b, Yonghua Xiong^{a*}

Fig.S1. Fluorescence recovery rate after adding different concentrations of Hg²⁺ at different activated GO concentrations

Fig.S2. The fluorescence intensity of ss-DNA biosensor after adding Hg²⁺ at different time

Fig.S3. (A) The fluorescence intensity of GO-ss DNA sensor after adding different concentrations of Hg^{2+} . (B) The value of F/F_0-1 after adding different concentrations of Hg^{2+} . F and F_0 were the fluorescence intensity of after adding Hg^{2+} , and before adding Hg^{2+} . Illustration was a linear relationship between low concentrations of Hg^{2+} and F/F_0-1 . (C)The illustration showed a linear relationship between low concentrations of Hg^{2+} and F/F_0-1 .

Fig.S4. Detection of metal ions using GO-ssDNA sensors