Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

A novel fluorometric assay for trypsin on the basis of gemini anionic surfactant/BSA/NR supramolecular assembly system with

favorable salt resistance

Lan Jia*a, YuFang Yangb, Xiang Liua, Song Chen*a, JingXin Zhua

^aKey Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, 030001, P. R. China

^bShanxi Agricultural Planning Design and Research Institute, Taiyuan, 030001, P. R. China *Corresponding author.

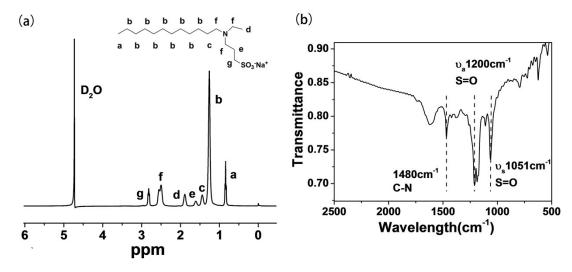
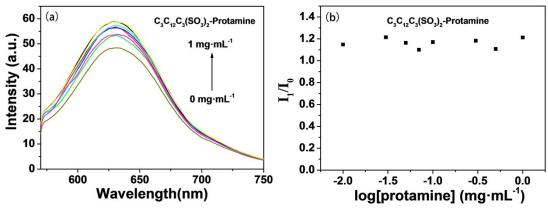



Fig. S1 (a)¹H NMR spectrum and (b) FT-IR spectrum of C₃C₁₂C₃(SO₃)₂

Fig. S2 (a) Fluorescence emission spectra of $C_3C_{12}C_3(SO_3)_2$ -protamine solutions with different concentration of protamine; (b) Plot of the I_1/I_0 as a function of logarithm concentrations of protamine in $C_3C_{12}C_3(SO_3)_2$ -protamine solutions.

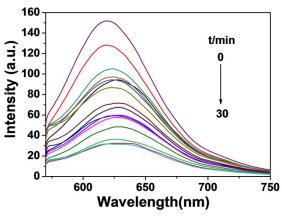
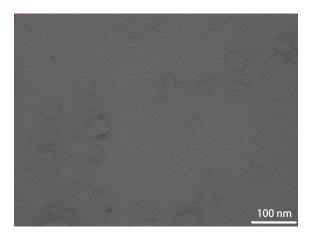



Fig. S3 Time-dependent fluorescence quenching of $C_3C_{12}C_3(SO_3)_2/BSA/NR$ assemblies in the presence of trypsin (0.05 mg mL⁻¹).

Fig. S4 TEM image of C₃C₁₂C₃(SO₃)₂/BSA /NR assemblies with 0.1 mg⋅mL⁻¹ trypsin.

Table S1 A comparison of different methods for trypsin determination

Materials	Methods	Linear range	LODs	Ref.
Electrochemical	Electro-	$0.005 – 0.15 \ \mu g \cdot mL^{-1}$	1.8 ng·mL ⁻¹	8
probe	chemical			
Ag NPs	Colorimetric	$2.5-200 \text{ ng mL}^{-1}$	$2 \text{ ng} \cdot \text{mL}^{-1}$	34
Au nanoclusters	Colorimetric	$0.9~\mu g\cdot mL^{\text{-}1}1.0~mg\cdot mL^{\text{-}1}$	$0.6~\mu g \cdot mL^{-1}$	35
Ag nanoclusters	Fluormetric	$0.0-50.0 \text{ n}\cdot\text{mL}^{-1}$	1 ng·mL ⁻¹	36
Au nanoclusters	Fluormetric	$0.01-2~\mu g\cdot mL^{-1}$	$0.004~\mu g\cdot mL^{-1}$	37
Fluorescent probe	Fluormetric	0 – $0.4~\mu g~mL^{-1}$	$0.0282 \text{ ng mL}^{-1}$	38
Cu nanoclusters	Fluormetric	$2-20~\mathrm{ng}\cdot\mathrm{mL}^{-1}$	$2 \text{ ng} \cdot \text{mL}^{-1}$	39
Carbon dots	Fluormetric	$2.5-80 \text{ ng mL}^{-1}$	$0.84~\mathrm{ng}\cdot\mathrm{mL}^{\text{-}1}$	40
Au nanoclusters	Fluormetric	$0.2-100~\mu g~m L^{-1}$	$0.08~\mu g~mL^{\text{-}1}$	41
Nile red	Fluormetric	1.6 - 150 ng mL ⁻¹	1.6 ng·mL ⁻¹	This work

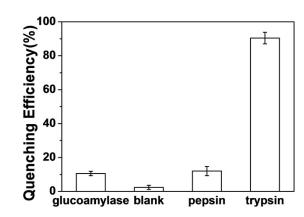
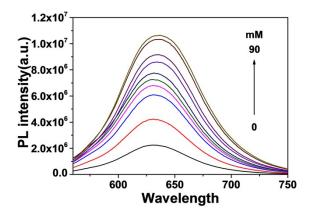



Fig. S5 Quenching efficiency of $C_3C_{12}C_3(SO_3)_2/BSA/NR$ solutions at 630 nm with different proteins. The concentration of each protein was 0.1 mg·mL⁻¹.

Fig. S6 Fluorescence emission spectra of SDS/protamine/NR solutions with trypsin (0.1 mg·mL⁻¹) at different NaCl concentrations.