Supporting information

A highly efficient fluorescent probe based on tetrahydroxanthylium-coumarin for

detection bisulfite in mitochondria

Meng-Xiang Wu,[‡]^a Xue-Rui Wei,[‡]^b Yu-Fang Wei,^a Ru Sun,^a Yu-Jie Xu,^{b,*} and Jian-Feng Ge^{a, c,*}

^a College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.

^b State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.

^c Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

Index

Fig. S1 Absorption spectra of probe 1 (10 μ M) in different solvents. The maximum absorption peak of probe 1 in different solvents (DCM (708 nm), TCM (670 nm), Tol (655 nm), MeOH (648 nm), THF (677 nm), EtOH (659 nm), H ₂ O (628 nm))
Fig. S2 Excitation spectra of probe 1 (10 μ M, λ_{em} = 514 nm, slit width: 3 nm/5 nm) towards the HSO ₃ ⁻ in PBS buffer (20 mM, pH = 7.4) containing 10% acetonitrile
Fig. S3 Determination of detection limit. (a) Fluorescence spectra of probe 1 (1 μ M) towards HSO ₃ ⁻ (0–1.8 μ M, λ_{ex} = 443 nm, slit width: 5 nm/10 nm). (b) Plot of fluorescence intensity of probe 1 with HSO ₃ ⁻ (0–1.8 μ M)2
Fig. S4 Determination of response time. Fluorescence spectra of probe 1 (10 μ M) towards HSO ₃ ⁻ (120 μ M, λ_{ex} = 443 nm, slit width: 3 nm/5 nm)
Fig. S5 . (a, c) The pH-dependent response for free probe 1 and probe 1 + HSO ₃ ⁻ (120 μ M, λ_{ex} = 443 nm, slit width: 3 nm/1.5 nm). (b, d) The pH-dependent response for free probe 1 and probe 1 + HSO ₃ ⁻ (120 μ M, λ_{ex} = 443 nm, slit width: 3 nm/5 nm)
Fig. S6 Percentages of HeLa cells viabilities remaining after cell treatment with probe 1 (untreated cells were considered to have 100% survival). Cell viabilities were assayed by the MTT method
Table. S1 Comparison with other HSO3 [−] detection probes5
Fig. S7 ¹ H-NMR spectrum of probe 16
Fig. S8 ¹³ C-NMR spectrum of probe 16
Fig. S9 HRMS(ESI ⁺) spectrum of probe 17

Fig. S1 Absorption spectra of probe 1 (10 μ M) in different solvents. The maximum absorption peak of probe 1 in different solvents (DCM (708 nm), TCM (670 nm), Tol (655 nm), MeOH (648 nm), THF (677 nm), EtOH (659 nm), H₂O (628 nm))

Fig. S2 Excitation spectra of probe **1** (10 μ M, λ_{em} = 514 nm, slit width: 3 nm/5 nm) towards the HSO₃⁻ in PBS buffer (20 mM, pH = 7.4) containing 10% acetonitrile.

Fig. S3 Determination of detection limit. (a) Fluorescence spectra of probe 1 (1 μ M) towards HSO₃⁻ (0–1.8 μ M, λ_{ex} = 443 nm, slit width: 5 nm/10 nm). (b) Plot of fluorescence intensity of probe 1 with HSO₃⁻ (0–1.8 μ M).

Fig. S4 Determination of response time. Fluorescence spectra of probe 1 (10 μ M) towards HSO₃⁻ (120 μ M, λ_{ex} = 443

nm, slit width: 3 nm/5 nm).

Fig. S5. (a, c) The pH-dependent response for free probe **1** and probe **1** + HSO_3^- (120 μ M, λ_{ex} = 443 nm, slit width: 3 nm/1.5 nm). (b, d) The pH-dependent response for free probe **1** and probe **1** + HSO_3^- (120 μ M, λ_{ex} = 443 nm, slit width: 3 nm/5 nm).

Fig. S6 Percentages of HeLa cells viabilities remaining after cell treatment with probe **1** (untreated cells were considered to have 100% survival). Cell viabilities were assayed by the MTT method.

Probe	Journal	Detection limit/nM	Response time /s	Organelles
COOEt CN	Anal. Methods,2016, 8,1572	12	30	/
COOH	Anal. Methods, 2017, 9, 3790	100	2400	Cytoplasm
	New J. Chem., 2018, 42, 3063	292	60	Mitochondria
	Chem. Commun., 2015, 51, 1154	3	200	Cytoplasm
	Sens Actuators B Chem., 2017, 241, 239	69	180	Mitochondria
	Talanta, 2018, 176 389	28	160	Mitochondria

	Talanta 165 (2017) 625– 631	30	240	Cytoplasm
	Dyes and Pigments 162 (2019) 459– 465	31.6	50	/
	Biomaterials 133 (2017) 82e93	3.5	60	Cytoplasm
	Biosensors and Bioelectronics 77 (2016) 725– 732	10	40	Mitochondria
	Dyes and Pigments 136 (2017) 830e835	860	300	Cytoplasm
S N N	Talanta 168 (2017) 203– 209	43	10	Mitochondria
	Talanta 162 (2017) 107– 113	230	2400	Cytoplasm
	This work	22.8	10	Mitochondria

Fig. S7 ¹H-NMR spectrum of probe 1.

Fig. S8 ¹³C-NMR spectrum of probe 1

Fig. S9 HRMS(ESI⁺) spectrum of probe 1.